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Abstract

This manuscript comprises a tutorial on traditional erasure codes
and their applications to networked distributed storage systems
(NDSS), followed by a survey of novel code families tailor made
for better repairability in NDSS.
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Preface

Portions of this survey, particularly the second part, was originally
written as personal notes when we started to work on this topic,
as an attempt to understand the big picture. The big picture was
accordingly summarized at a very high level in a short survey [6].
The tutorial part on NDSS and coding theory was added later, to-
gether with one code construction that we proposed, when these
personal notes became lecture notes that were provided for the
Open Phd program at Warsaw University and presented at a tu-
torial in ICDCN 2012. The current version is an updated version of
these lecture notes, including technical details and taking into ac-
count some recent developments, as well as providing background
context to make the manuscript self-contained.
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Introduction

When communicating over an erasure channel, a transmitter typ-
ically adds redundancy to the message to be sent, so that the in-
tended recipient can reconstruct the original message despite the
loss of parts of the transmitted data. The mapping from the origi-
nal message to its redundant version is referred to as encoding, and
the challenge is to design an efficient coding scheme, that provides
good protection against erasures at a low overhead.

Analogous problems arise in the context of data storage. Dam-
ages to the physical storage medium may make some bits/bytes
unreadable and redundancy is needed to protect the stored data.
For instance, a compact disc (CD) can often tolerate scratches
thanks to the presence of a suitable coding technique, called Reed-
Solomon codes [33]. Another example at the other end of the size
spectrum of storage systems is a large-scale distributed system
such as a data-center or a peer-to-peer system with many storage
devices, some of which may fail or become inaccessible due to net-
work problems. Redundancy is again needed for fault tolerance,
so that the aggregate data stored in the system can be retrieved.
Though coding is a way of handling failures in the aforementioned
scenarios, the design of a good code naturally depends on the
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4 Introduction

peculiarities of the setting considered - thus, codes for magnetic
medium, solid state devices, CD, disk arrays or distributed systems
may aim for distinct desirable properties.

The most commonly deployed multi-storage device systems are
RAID (Redundant Array of Independent/Inexpensive Disks) sys-
tems [29], which store the data across multiple disks, some of
which containing the actual information, while the others provide
fault-tolerance by storing redundancy. Furthermore, distributing
the data over multiple storage disks may also help increase the
throughput of reading data, thanks to the parallelization of disk
accesses. RAID systems traditionally put the multiple storage
disks within a single computing unit, making the internal distri-
bution transparent both logically as well as physically for the end
users. Currently, typical RAID configurations allow for two fail-
ures within a RAID unit, though configurations tolerating more
failures have also been studied.

The idea of distributing data across multiple disks has been
naturally extended to multiple storage nodes which are intercon-
nected over a network, as we witness in data-centers, and some
peer-to-peer (P2P) storage systems. We call such systems net-
worked distributed storage systems (NDSS), where the word “net-
worked” insists on the importance of the network interconnect. It
is worth recalling that the individual storage nodes in an NDSS
may themselves be comprised of multi-disk RAID systems, whose
storage disks may themselves employ some redundancy scheme for
fault-tolerance of their physical medium. Thus, while redundancy
is present at several layers of a large storage system, this survey
only looks at redundancy through coding techniques at the high-
est level of abstraction, namely for NDSS - and do so in a manner
agnostic of the lower layer details.

At the NDSS level, data stored in individual storage nodes may
become unavailable due to various reasons. As pointed out earlier,
either a storage node or the communication link to this node may
fail, but these are not the only cases. In peer-to-peer settings, a
user operating a storage node may just decide to make it offline
temporarily, or leave the system permanently. Irrespective of the
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nature of the failure, redundancy is needed to ensure data avail-
ability. Depending on the nature of failure, the lost redundancy
may also need to be replenished in order to ensure long term data
durability. The simplest form of coding, namely replication, has
been and still is a popular way to ensure redundancy in NDSS,
due to its simplicity. However, given the sheer volume of data
that needs to be stored and the overheads of replication, there
has been in recent years an immense interest in using coding for
NDSS among major commercial players such as Google and Mi-
crosoft [18] to name a few, an interest which has also been mirrored
in the academic world.

The aim of this survey is to look at coding techniques for NDSS,
which aim at achieving (1) fault tolerance efficiently and (2) good
repairability characteristics to replenish the lost redundancy, and
ensure data durability over time. We will like to make the fol-
lowing disclaimer about the scope of this survey. There are many
other criteria (than repair) that may guide the design of codes
for NDSS. There are also many other kind of performance issues
(than repair) that still need to be studied for many of the codes
that we summarize in this survey. We will however confine our dis-
cussions mainly to codes providing good repairability. Also, while
we have tried to provide an overview of the most prominent code
techniques representing different points in the code design space,
our treatment of the subject is by no means exhaustive. We have
both deliberately as well as out of our ignorance given the rapid
pace of developments in the area, left out many works.

This survey is organized in two parts. The first part gives an
overview of some basic concepts related to networked distributed
storage systems (NDSS) and provides a quick introduction to clas-
sical coding theory, concluding with a discussion of the pros and
cons of using classical erasure codes for NDSS. Such a discussion
leads us to the second part, where several new families of codes tai-
lor made for NDSS repairability are described and reviewed. Since
it is impossible to keep track of every single code construction
proposed, we instead identify prominent design choices, which are
described and illustrated respectively in Chapter 6 for a network
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coding approach, in Chapter 7 for combining two layers of erasure
codes, and in Chapter 8 for codes aiming at local repairability.
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Networked Distributed Storage Systems

Networked distributed storage systems (NDSS) refer to systems
that store data in a distributed manner across a computer net-
work, where the interconnect plays an important role. NDSS are
commonplace nowadays, they operate in several environments such
as peer-to-peer (P2P) systems and data centers that comprise the
backbone infrastructure of cloud computing. They consequently
cater to very different applications and workloads.

In P2P systems, the storage servers are run by different users.
P2P backup systems (e.g. the former version of Wuala [37]) are
formed by swarms of tens to hundreds of nodes for individual files
or directories, but may distribute such swarms arbitrarily out of
hundreds of thousands of peers. P2P systems are geographically
distributed and connected through an arbitrary topology. Individ-
ual P2P nodes may frequently go offline and come back online
(known as temporary churn) unpredictably, subject to the whims
of individual storage node owners.

In contrast, data centers comprise of tens of thousands of nodes,
while individual clusters such as that of Google File System (GFS)
are formed out of hundreds up to thousands of nodes. Individual
data objects are spread over tens of nodes from within a clus-

7
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ter. The nature of applications varies a lot, and may not only be
storage and input/output (I/O), i.e. write/read intensive (e.g., file
storage and video streaming), but also computation intensive (e.g.,
Hadoop tasks [14]). Data center interconnects have well defined
topologies and storage nodes are either collocated or distributed
across a very few geographic regions. They use dedicated infras-
tructures with relatively infrequent temporary outages. However,
nodes may also be turned off/on temporarily in a planned manner,
for instance for maintenance and upgrades or saving energy .

Despite their relatively different size, very particular topology
and network dynamics, both data centers and peer-to-peer stor-
age systems however share common characteristics: (1) the volume
of data to be stored is immense and hence it is distributed over
many nodes, (2) failures are a norm rather than an exception, and
there is a need for fault-tolerance strategies, (3) this same fault-
tolerance has to be ensured over time, requiring in turn efficient
maintenance mechanisms, (4) apart the distinguishing commonal-
ity among NDSS that interconnect plays an important role (hence
the qualifying term ‘networked’) in the distribution of data across
many storage nodes. We next elaborate these three first issues.

2.1 Scaling-up vs Scaling-out

P2P storage systems are naturally distributed. However ‘scaling-
out’ is an inevitable design choice in data centers. The term
scaling-out refers to the fact that many logical storage units (or
simply ‘storage nodes’) are interconnected together to increase the
overall capacity of the system. We note that a logical storage unit
in itself may be internally implemented by composing several stor-
age components (hard disks), for instance as in RAID systems [29].

As opposed to scaling-out, a hypothetical alternative would be
to ‘scale-up’, that is building a single piece of special hardware
with adequate storage capacity. However, the demand for storage
is astonishing. For instance, back in 2010, Facebook was report-
edly storing over 260 billion images, which translated to over 20
petabytes of data [2]. Users were then uploading one billion new
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photos (60 terabytes) each week. If at all a single piece of hard-
ware could be built to store all that data, not only would it be
prohibitively expensive, but when many of the stored data would
be accessed at the same time, the limited input/output (I/O) re-
sources of the hardware would be a significant bottleneck. Face-
book served over one million images per second at peak demand
in 2010. Furthermore, as the amount of data grows over time, one
would need to frequently move to a new device with much larger
capacity, and in the case of a failure, all the data would be lost.
Scaling-out on the contrary has already proven to be a feasible
option since the system can grow in an organic manner by incre-
menting the number of commodity storage nodes over time, while
only a small subset of the system fails and gets replaced at any
specific time.

2.2 Redundancy and Storage Overhead

With the number of its components increasing (storage nodes, but
also routers, network, power supply, cooling, etc.), an NDSS ends
up having a significant (even if small) subset of these components
not functioning properly at almost any time instance. Thus, fault-
tolerance to make the overall system and its services transparent
from the underlying faults is essential. This is achieved by the
addition of redundancy.

Redundancy is achieved in many different manners. For in-
stance, in data centers, auxiliary batteries are used for power sup-
ply to racks. Multiple (typically two) switches are provided per
rack for connectivity. Likewise the interconnect itself has multiple
point-to-point routing options to tolerate faults and avoid conges-
tions. Similarly, the data is replicated to deal with the outage of
the storage nodes themselves, typically in storage nodes in dif-
ferent racks to tolerate the failure of a complete rack. In some
environments, the data is further redundantly stored in multiple
data centers so that it remains available even if a whole data cen-
ter becomes unavailable. Amazon AWS introduced the concept of
‘availability zones’ where data centers across different availability
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zones utilize independent physical infrastructure, such as power
or water supply, so that the faults can be decoupled. The data
centers can in turn also be distributed across multiple geographic
regions, in order to tolerate geographically localized catastrophes.

In a blog from O’Reilly,1 a further level of redundancy is sug-
gested for end users of cloud services, namely that of using different
service providers, and hence insulating oneself from the failings -
technical or commercial - of the individual service providers.

We note that realizing most of the above kinds of redundancy
inherently assumes storing the data itself redundantly. Replication
is a simple way of doing so. A simple rule of thumb is 3-way repli-
cation (a more general variation being r-way replication), where
the rationale is that if one of the replica becomes unavailable,
one can recreate a new replica using the remaining two, with the
optimism that not both of the remaining replicas fail while the re-
plenishment of redundancy is being carried out. This brings up two
interesting issues pertaining to distributed storage systems: how
to trade redundancy and fault tolerance, which we discuss below,
and how to handle the maintenance mechanisms if we move away
from replication, which is the topic of the next section.

Clearly, the more redundancy is used, the more fault-tolerant
the storage system becomes, but there is a price to pay: redun-
dancy increases the overheads of the storage infrastructure. The
cost for such an infrastructure should be estimated not only in
terms of the hardware, but also of real estate, operation and main-
tenance of a data center. A US Environmental Protection Agency
report of 20072 indicates that the US used 61 billion kilowatt-hours
of power for data centers and servers in 2006. That is 1.5 percent of
the US electricity use, and it costs the companies that paid those
bills more than $4.5 billion. Data to be stored is not reducing over
time, and a study sponsored by the information storage company
EMC estimated that the world’s data is more than doubling ev-

1 http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-
moment.html

2 http://arstechnica.com/old/content/2007/08/epa-power-usage-in-data-centers-
could-double-by-2011.ars
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ery two years, reaching 1.8 zettabytes (1 zettabyte = 1021 bytes)
of data to be stored in 2011.3

Given the volume of data concerned and the associated cost of
storing it reliably, a first important issue is, “is there any other
strategy which can achieve redundancy at least as effectively as
replication of the data, but more efficiently in terms of storage
overheads?”

Coding techniques (see next chapter), long studied in the con-
text of robust communication over unreliable channels, readily
provides a solution to this issue. Not surprisingly, major industry
players like Google and Microsoft have adopted the use of erasure
codes in the new Google File System and Windows Azure [18] re-
spectively. Other storage services like CleverSafe [5] andWuala [37]
have been using erasure codes in their systems for longer.

2.3 Maintenance of Redundancy

We noticed above that the rationale behind 3-way replication is
that in case of a failure involving a copy, one of the two copies left
can be used to recreate the missing one. This illustrates the need
for recreation of lost redundancy. If a new copy is not obtained,
the next failure will let the data with no fault tolerance at all, and
this data will eventually become unavailable or lost.

In order to maintain a desirable amount of redundancy in the
system over time, three important functionalities are required.
Foremost, failures need to be detected correctly. Delay in
detection naturally delays the repair process, inadvertently leav-
ing the system vulnerable. Repairs triggered due to false positives,
i.e., concluding that a node has failed when it in fact has not (for
instance if communication is delayed due to network congestion)
may however aggravate the situation. They may cause further con-
gestions and cascading failures (for instance, due to positive feed-
back based amplification of congestion). Monitoring and detecting
failures properly in large scale systems is thus an issue of its own

3 http://www.emc.com/about/news/press/2011/20110628-01.htm
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right, and is beyond the scope of our study.
Once some failures are detected, the next question is whether

and when to carry out repairs. In peer-to-peer systems, nodes
frequently go offline to come back online later, and while a rel-
atively higher amount of initial redundancy is essential to deal
with such temporary ‘failures’, repairs can be avoided by waiting.
Eventually, if repairs need to be carried out, the cost of multi-
ple repairs are also likewise amortized. In data-center settings, a
more proactive approach to repair may be the norm, nonetheless,
there are circumstances where repairs are either delayed in order
to avoid positive feedbacks,4 or multiple faults may accumulate
due to temporally correlated failures which occur faster than the
repair process. The associated repair time and load at the live
nodes facilitating the repairs are other important characteristics.
In summary, whether and when to trigger repairs is a system design
choice, however either as a feature to tolerate voluntarily delayed
repair, or as a safety mechanisms in case of correlated failures, the
ability to repair multiple faults simultaneously is desirable.

The final functionality is the repair process itself. That is
the primary focus of this survey. Suppose that we have appropri-
ate mechanisms to detect failures and trigger repairs, how is repair
performed? In the case of replication, copies of the data are down-
loaded from live nodes. What happens if replicas are replaced by
erasure codes is less obvious. Traditional erasure codes were de-
signed for robust communication, where the objective is to retrieve
the original message. From the perspective of storage systems, this
is equivalent to data retrieval or data reconstruction for accessing
the stored object. Therefore as long as adequate redundancy is
present in the system, from an end-user or application perspec-
tive, it is adequate. Thus a long believed mantra when applying
codes for storage has been that ‘the storage device is the erasure
channel ’. Such a simplification however ignores the maintenance

4Positive feedback induced cascading failures have been witnessed in practice,
for instance the case Amazon Elastic Block Store’s outage in April 2011 http:

//storagemojo.com/2011/04/29/amazons-ebs-outage/
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process in NDSS for long term reliability.
This realization has led to a renewed interest in designing codes

tailor-made for NDSS, looking at better/more efficient strategies
to carry out the redundancy replenishment. In order to pursue
this discussion in more precise terms, the next chapter recalls a
few basic concepts from erasure codes, which will then allow us to
analyze concretely how these erasure codes coming from commu-
nication can be used for storage applications.
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Coding Preliminaries

This chapter presents some basic concepts and techniques from
classical coding theory, such as maximal distance separable (MDS)
codes, and Reed-Solomon codes, so as to discuss erasure codes for
storage applications in precise terms. Whenever needed, we will
introduce the necessary mathematical tools. In particular, we will
describe how to construct finite fields. For now, let us denote the
binary alphabet {0, 1} by F2. The index 2 refers to the cardinality
of the set, while the letter F stands for field. It basically means that
our usual arithmetic works: addition, subtraction, multiplication
which is commutative, and division by a non-zero element. Since
we only have 0 and 1, operations are performed modulo 2: 0+0 = 0,
0 + 1 = 1 + 0 = 1, 1 + 1 = 0, for the addition (or XOR) and
0 · 1 = 1 · 0 = 0, 0 · 0 = 0 and 1 · 1 = 1, for the multiplication. By
u ∈ Fk

2 we mean a k-dimensional row vector u = [u1, . . . , uk] with
coefficients in F2.

3.1 Generator and Parity Check Matrix

A code consists of a map that sends a vector u ∈ Fk
2 to a vector

x ∈ Fn
2 where n > k. We will only be interested in linear codes,

15
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that is when the map from u to x is linear, which means that x
can be written as vector matrix multiplication:

uG = x

where G is a k × n matrix with coefficients in F2 called generator
matrix of the code. We usually refer to u as a vector of information
symbols, and to x as a codeword. The set of codewords is called
codebook, and we will denote a code or its corresponding codebook
by C. It is standard to write a (n, k) code, to emphasize the pa-
rameters of the code C, where n is called the length of the code,
and k its dimension.

Definition 1. The ratio k/n is called the rate of an (n, k) code.

The rate of a code is the proportion of the transmitted data
which is useful.

Example 1. The repetition code takes one information symbol
and repeats it n times. For example, a (3, 1) repetition code can
be written as

u
[
1 1 1

]
= [u, u, u]

where u is either 0 or 1. Its rate is 1/3.

Example 2. Another simple linear code, sometimes called single
parity check code, consists of appending one bit of parity, that is:
take u = [u1, . . . , uk] and add 1 bit given by the sum u1+ . . .+uk.
This (k + 1, k) code can be written, if k = 2, as

[u1, u2]

[
1 0 1
0 1 1

]
= [u1, u2, u1 + u2]

where u1 and u2 are either 0 or 1. Its rate is 2/3.

By looking at these two examples, we notice that they have
something in common. Both codewords actually contain the orig-
inal information symbols, namely

[u, u, u]
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contains u and

[u1, u2, u1 + u2]

contains [u1, u2]. This happens exactly when the generator matrix
G is of the form

G =
[
Ik A

]
(3.1)

for some k × (n− k) matrix A and Ik is the identity matrix

Ik =

1 . . .

1

 .

In this case, the code is said to be systematic.
We have seen above how, given a vector u of information sym-

bols, to create a codeword x. The reverse question would be: given
a vector x ∈ Fn

2 , how to recognize whether it is a codeword from
a given code?

Example 3. Let us take again the repetition code of Example 1.
It is obvious that if we see a codeword of the form x = [u, . . . , u],
then it is a codeword from the repetition code. This is not a math-
ematically satisfying answer though! In most cases, things will not
be that obvious. Thus let us try to see what conditions uniquely
determine a codeword x = [x1, x2, x3] = [u, u, u] ∈ F3

2 from the
(3, 1) repetition code. We notice that if we sum x1 and x3, or x2

and x3, we get 0 both times, and in fact this is enough to char-
acterize our codeword. Indeed: if x = [x1, x2, x3] = [u, u, u], then
x1 + x3 = 2u = 0 and x2 + x3 = 2u = 0. Conversely, take any
x = [x1, x2, x3] such that x1 + x3 = x2 + x3 = 0. That x1 + x3 = 0
implies that x1 = −x3 = x3 and similarly we get that x2 = x3 and
it must be that x = [x1, x1, x1]. We can rewrite these conditions
in a matrix form: [

1 0 1
0 1 1

]x1

x2

x3

 =

[
0
0

]
.
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In general, we can associate to any linear (n, k) code C an (n−
k)×n matrix H called parity check matrix, with the property that

HxT = 0

whenever x belongs to the code and xT denotes the transpose of
x. Let us try to understand why this is the case. Recall that

xT = (uG)T =
(
u
[
Ik A

])T
=

[
Ik
AT

]
uT

where A is a k × (n− k) matrix so that

[
−AT In−k

]
xT =

[
−AT In−k

] [ Ik
AT

]
uT = 0

and the parity check matrix H can in fact be defined as

H =
[
−AT In−k

]
. (3.2)

Example 4. Consider the following (7,4) Hamming code, whose
3 × 7 parity check matrix contains as columns all binary vectors
of length 3:

H =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

Using (3.2) and (3.1), we know that its generator matrix G is given
by

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

3.2 Minimum Distance and Singleton Bound

We have seen that a linear (n, k) code consists of taking k informa-
tion symbols, and adding n− k symbols. These n− k symbols are
there for redundancy. Suppose we want to transmit the symbol u
through an erasure channel, that is a communication channel that
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Fig. 1: Richard Hamming (1915-1998)

will output either the input with no error or an erasure. If only u
is sent, either the receiver gets u, in which case communication is
perfect, or he receives nothing. By using an (n, 1) repetition code,
the receiver will be able to understand that u was sent as long as
there are no more than n− 1 erasures.

Note that some communication channels introduce errors in-
stead of erasures. This case will not be treated here, hence the
codes we deal with are in fact erasure codes.

Our next question is thus: given a linear code with parameters
(n, k), what is the best maximum possible number of erasures of
arbitrary symbols a code can tolerate?

To answer this, we need the notion of Hamming distance,
named in honor of Richard Hamming (see Fig. 1), as was the
Hamming code in the above example.

Definition 2. Given two vectors x and y, the Hamming distance
between x and y is the number of coefficients in which x and y
differ, which is denoted by d(x,y).

Example 5. If x = [1, 0, 0, 1] and y = [0, 0, 0, 1], then d(x,y) = 1.

Definition 3. Given a vector x, the Hamming weight of x is the
number of non-zero coefficients of x, denoted by wt(x).
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Note that
d(x,y) = wt(x− y).

Example 6. If x = [1, 0, 0, 1] and y = [0, 0, 0, 1], then wt(x) = 2,
wt(y) = 1 and x− y = [1, 0, 0, 0] so that wt(x− y) = d(x,y) = 1.

Definition 4. The minimum (Hamming) distance dH of a code
C is the minimum Hamming distance between any two distinct
codewords, namely

dH(C) = min
x̸=y∈C

d(x,y) = min
x ̸=y∈C

wt(x− y).

When the minimum distance of a code needs to be emphasized,
dH is sometimes written explicitly as a code parameter, namely
we speak of an (n, k, d) code C to mention that dH(C) = d.

In fact, when C is a linear code, it is not needed to check every
pair of codewords, it suffices to compute

dH(C) = min
x ̸=0,x∈C

wt(x),

since the difference of any two codewords is again a codeword. Let
us go back to our two examples.

Examples 7. Consider the three codes we have seen so far.

(1) For the repetition code of Example 1, there are two code-
words [0, 0, 0] and [1, 1, 1] and thus dH(C) = 3.

(2) For the code of Example 2, codewords are of the
form (u1, u2, u1 + u2), there are thus 4 of them:
[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], and dH(C) = 2.

(3) For the Hamming code of Example 4, we need to compute
the generic form of a codeword first:

[u1, u2, u3, u4]


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= [u1, u2, u3, u4, u1 + u2 + u4, u1 + u3 + u4, u2 + u3 + u4],



3.2. Minimum Distance and Singleton Bound 21

from which we see that dH(C) = 3 (it is achieved by
picking for example u1 = 1, u2 = u3 = u4 = 0, and
having only 2 non-zero coefficients is not possible).

We can now link the capability of a code to tolerate erasures
to its minimum distance. Suppose a codeword x = [x1, . . . , xn] of
length n suffers from erasures at arbitrary positions. How many
can be recovered? The codeword can be recovered as long as there
is no doubt which of them was sent, that is, even if some coordi-
nates are erased, the codewords are still distinguishable.

Example 8. Consider the single parity check code, which con-
tains as codewords

[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0].

If say one coefficient is erased, we get

[0, ∗, 0], [0, ∗, 1], [1, ∗, 1], [1, ∗, 0] or [∗, 0, 0], [∗, 1, 1], [∗, 0, 1], [∗, 1, 0]

or

[0, 0, ∗], [0, 1, ∗], [1, 0, ∗], [1, 1, ∗].

In all the three cases, there is no doubt which codeword was sent.
Of course, if two coefficients are erased, then for example we have

[∗, ∗, 0], [∗, ∗, 1], [∗, ∗, 1], [∗, ∗, 0]

and if we get [∗, ∗, 1], there is no way to know whether [0, 1, 1] or
[1, 0, 1] was sent.

If a code C has minimum distance dH(C) = d, then it can
support d − 1 erasures. The reason is as mentioned above: since
every two codewords differ in at least d positions, as long as not
more than d − 1 positions are erased, it is possible to distinguish
them.

The minimum distance is related to the parity check matrix as
explained below.
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Theorem 1. If H is the parity check matrix of a code C of length
n, then dH(C) = d if and only if every d − 1 columns of H are
linearly independent and some d columns are linearly dependent.

Proof. There is a codeword x of weight wt(x) = d in C if and only
if

HxT = 0

for x of weight d, if and only if d columns of H are linearly depen-
dent.

The Singleton bound (due to Richard Collom Singleton) gives
the best possible minimum distance once n and k are given.

Theorem 2. (The Singleton bound.) Let C be an (n, k, d) lin-
ear code. Then

n− k ≥ d− 1,

that is

d ≤ n− k + 1.

Proof. The rank ofH is n−k, and by definition, this the maximum
number of linearly independent columns of H.

Corollary 1. An (n, k) code reaching the Singleton bound can
recover from up to n− k erasures.

Proof. An erasure code C of minimum distance dH(C) can recover
from up to dH(C)− 1 erasures, and a code reaching the Singleton
bound satisfies dH(C) = n− k + 1.

Definition 5. A code achieving the Singleton bound is called
maximum distance separable (MDS).

Because MDS codes are providing the best erasure protection given
k and n, they are often the preferred erasure codes for both com-
munication and storage applications. Let us see some examples of
MDS codes.
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Examples 9. Among the examples seen so far, only two codes
have the MDS property.

(1) The repetition code (n, 1) is a MDS code. Indeed n−k+
1 = n which is the minimum distance of the code (recall
that this code has only 2 codewords, one with n ones and
one with n zeroes).

(2) The single parity check code (k+1, k) is also a MDS code.
In this case n− k+ 1 = (k+ 1)− k + 1 = 2 which is the
minimum distance of the code. This can also be checked
explicitly by looking at the 4 possible codewords.

(3) The (7, 4) Hamming code is not MDS, since dH(C) = 3,
while n − k + 1 = 7 − 4 + 1 = 4. Note that dH(C) can
be computed from Theorem 1, since the parity check
matrix of the (7,4) Hamming code contains as columns
all the binary vectors of length 3. Indeed, every d−1 = 2
columns are linearly independent, and there exists d = 3
columns which are linearly dependent.

Are there any other MDS codes than the two above? In fact,
as long as we keep only 0 and 1 as coefficients of the code parity
check matrix, the answer is no. Or more precisely:

Proposition 1. A binary (n, k, n−k+1) linear code cannot exist
for k ̸= 1 and k ̸= n− 1.

Proof. By Theorem 1, we know that an (n, k, n−k+1) code has a
parity check matrix with n− k rows, n columns and the property
that every n − k columns are linearly independent. Let us try to
build such a matrix. We can get n−k linearly independent columns
of course, for example we can use the identity matrix In−k. Now
we add one more column, and this column must have the property
that out of all the n− k + 1 columns, every choice of n− k gives
linearly independent columns. If we choose the identity matrix, it
is easy to see that we can add one column containing only ones:
indeed, for any choice of n− k − 1 columns among the n− k first
columns, one gets exactly one row with only zeroes, and thus the
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whole one vector will always be linearly independent. Now let us
see that once we have those n− k + 1 vectors, we cannot add any
more column to [

In−k 1
]
.

This follows from the fact that we actually had no choice when
picking the whole 1 vector. Any other vector, that is having at
least 0 zero, can be obtained from n− 1 unit vectors. This shows
that n = n − k + 1, that is k = 1. A similar argument works if
the identity matrix is replaced by any (n− k)× (n− k) full rank
matrix. The case k = n− 1 corresponds to a 1× n matrix H.

From the proof of the above proposition, we understand that
the reason behind the lack of binary MDS codes is that we do
not have enough possible choices of “linear combinations” when
we only work with binary coefficients. Thus, to have (hopefully)
more choices of MDS codes, we need to work with another set of
coefficients than just 0 and 1.

3.3 Finite Fields and Reed-Solomon Codes

Consider the set F2[X] of polynomials in X with coefficients that
are either 0 or 1. Now given a polynomial p(X) ∈ F2[X], we can
look at the set denoted by F2[X]/(p(X)) of polynomials in F2[X]
modulo p(X). The notion “modulo a polynomial” is the same as
“modulo an integer”. For it to work, we need the Euclidean divi-
sion, that is for f(X) ∈ F2[X], we write

f(X) = p(X)q(X) + r(X)

where the degree of r(X) is smaller than that of p(X), and we
say that f(X) is congruent to r(X) modulo p(X). F2[X]/(p(X))
contains all the possible remainders r(X) where the arithmetic is
dictated by the choice of p(X). The arithmetic in F2[X]/(p(X))
is close to “usual”, meaning that we can add and multiply two
polynomials modulo p(X). However it is not clear, and in fact not
true in general, that any non-zero polynomial is invertible.
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Examples 10. These two examples illustrate scenarios when
F2[X]/(p(X)) is not and is a field respectively.

(1) Take p(X) = X2+1, and look at F2[X]/(p(X)). We first
notice that polynomials in F2[X]/(p(X)) have a degree
which is at most 1, because p(X) is of degree 2. The
possible choices are thus {0, 1, X,X + 1}. We also know
that X2+1 = 0, that is X2+1 = (X+1)(X−1) = (X+
1)2 = 0, showing some anomaly with respect to usual
arithmetic, since a non-zero element squared becomes 0.
In fact, this is enough to show that F2[X]/(p(X)) cannot
be a field: if (X + 1) were invertible, then (X + 1)2 = 0
could be multiplied on both sides by (X +1)−1, showing
that X + 1 = 0, which leads to a contradiction.

(2) Instead, take p(X) = X2 + X + 1, and look again at
F2[X]/(p(X)). As a set, we still have {0, 1, X,X + 1}
except that this time X2 + X + 1 = 0, that is X2 =
X+1. Now every non-zero element is invertible, because
X(X + 1) = X2 +X = 1.

The key ingredient is that if p(X) is irreducible, that is, it
cannot be factored into a product of polynomials of lower de-
gree, then F2[X]/(p(X)) will indeed have a field structure, thus
it is called a finite field: finite, because its cardinality is finite, it
is in fact 2s where s is the degree of p(X). There is something
we can understand from the above examples. If the polynomial
p(X) is reducible, then it can be written as p1(X)p2(X) for some
non-zero polynomials, and since p(X) = 0 modulo p(X), then
p1(X)p2(X) = 0 modulo p(X). If p1(X) were invertible, then we
would get by multiplying both sides of the equation by p1(X)−1

that p2(X) = 0, a contradiction.
Roughly speaking, when we say that p(X) = 0 in

F2[X]/(p(X)), this means that p(X) has a zero in F2[X]/(p(X)),
say w, and it is more convenient to describe F2[X]/(p(X)) in terms
of this element w than keeping the polynomial notation. A more
formal way to deal with finite fields can be found in about any
abstract algebra textbook!
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Fig. 2: Irving S. Reed (1923-) and Gustave Solomon (1930-1996)

Example 11. Take again p(X) = X2 +X + 1 and call w a root
of p(X), such that p(w) = 0, that is w2 + w + 1 = 0. Then the
above construction gives a finite field with 4 elements, denoted by
F4 = {0, 1, w, w + 1}.

Let Fq denote some finite field (when q = 2, we get back to
F2 = {0, 1}). It is now possible to read again the previous section,
and define everything in Fq: generator matrix, parity check matrix,
minimum distance. The advantage of moving away from F2 is that
we can now present a new class of MDS codes, incidentally one of
the most famous ones, the class of Reed-Solomon codes [33].

Let u = [u1, u2, . . . , uk] be the information symbols and let
α1, . . . , αn be n distinct values in some finite field Fq. Consider the
polynomial

f(X) = u1 + u2X + . . .+ ukX
k−1.

Codewords are obtained by evaluating f at each αi, that is

[f(α1), f(α2), . . . , f(αn)].

We have that k < n and n can be at most the size of Fq.

Example 12. As a toy example, we can take F4 as the chosen
finite field, given by {0, 1, w, w + 1} with w2 = w + 1. Since the
size of the field is 4, we can pick say n = 4 and k = 2. Then

f(X) = u1 + u2X ∈ F2[X]

and a codeword looks like

[f(0), f(1), f(w), f(w+1)] = [u1, u1+u2, u1+u2w, u1+u2+u2w].
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This can be expressed in terms of generator matrix as well:

[u1, u2] =

[
1 1 1 1
0 1 w w + 1

]
.

We conclude by noticing that Reed-Solomon codes are maxi-
mum distance separable (MDS) codes. The argument is based on
Lagrange interpolation: a codeword from a Reed-Solomon code is
formed by n points of a polynomial of degree k − 1. Such a poly-
nomial is fully determined by k points or more. This means that
if at most n− k points are lost, there are still k left to reconstruct
the polynomial, no matter which set of k points is left.

Now armed with the notions of an (n, k) MDS erasure code,
and having in mind examples of MDS codes such as the repetition
code, the single parity check code, and Reed-Solomon codes, we
are ready to go back to NDSS, and study how MDS codes are used
in that context.
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4

Erasure codes for NDSS

In the following, we study how MDS erasure codes can be used
to store a single object in a networked distributed storage sys-
tem (NDSS). Consider a system comprising of N nodes, of which
n < N nodes are used to store a single object in a distributed man-
ner. The distribution is done using an (n, k) MDS erasure code (see
Definition 5), and replication is included since it can be seen as a
repetition code. We ignore non-MDS erasure codes at this point,
because from a pure storage-efficiency and fault-tolerance perspec-
tive, non-MDS codes are sub-optimal (recall the Singleton bound
from Theorem 2). We will however see in the second part of this
survey that the use of non-MDS codes may be justified because of
better repairability, and study some such codes in later chapters.

Thus, in this chapter, by an (n, k) code we always mean an MDS
code. Now consider a single data object, cut into k pieces, and
which are mapped to n encoded fragments using an (n, k) code.
Every encoded piece for an object is stored in a distinct node. The
data can be retrieved by accessing the encoded fragments from any
k of these n nodes, and carrying out a reconstruction (decoding).
In practice a single object may first be partitioned in smaller parts
(depending on the size of the object and code parameters), and
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the whole object’s availability will depend on the availability of
all the parts. In the following we ignore such intricacies. One may
interpret our study as regarding the availability of one specific
‘part’ in such a setting.

Definition 6. The storage overhead induced by the use of an
(n, k) code is given by n/k. Note that this is the reciprocal of
the rate of a code (see Definition 1). The storage overhead is also
known in the literature as the stretch of a code.

We have previously argued that the rationale for using erasure
codes is their supposedly better fault-tolerance than replication,
for the same storage overhead. This can be quantified using the no-
tion of static resilience. The static resilience of a system is defined
as the amount of fault-tolerance it achieves given an initial level
of redundancy, if no further remedial actions (such as, restoring
redundancy) are taken.

4.1 Static Resilience

Consider a simplistic scenario where node failures are i.i.d. (that is
independent and identically distributed). Let µ be the probability
that an individual storage node is available, or alternatively, let
f = 1 − µ be the failure probability of individual storage nodes.
The actual number of independent node failures is then binomially
distributed. Hence the probability that an object stored using an
(n, k) MDS erasure code remains available AMDS is equal to the
probability that at least k nodes are available, i.e.,

AMDS =
n∑

j=k

(
n

j

)
µj(1− µ)n−j =

n∑
j=k

(
n

j

)
fn−j(1− f)j. (4.1)

In contrast, with r-way replication, the probability Arep that the
object remains available is

Arep = 1− f r = 1− (1− µ)r. (4.2)

Note that the static resilience for r-way replication can be viewed
as a special case of the (n, k) MDS erasure code scheme, with n = r
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and k = 1, since replication is essentially a trivial MDS erasure
code, namely the repetition code.

Example 13. If the probability of failure of individual nodes is
f = 0.1, then for the same storage overhead of 3, corresponding to
r = 3 for replication and to a (9, 3) erasure code, the probabilities
of losing an object are

1− Arep = 10−3

for replication, using (4.2) and

1− AMDS ∼ 3 · 10−6

for the (9, 3) erasure code using (4.1), respectively.

This example illustrates that an erasure code can be used
to achieve significantly better resilience w.r.to replication, for an
equivalent storage overhead.

An interesting question is, do erasure codes always provide bet-
ter fault-tolerance than replication? This was investigated in [22],
whose analysis and results are summarized next.

In order to compare both strategies subject to an equivalent
storage overhead, let us write n = rk where r = n/k is the storage
overhead (see Definition 6). Now recall from (4.1) that

AMDS = P (X ≥ k)

where X is the random variable representing the number of online
storage nodes, and is binomially distributed (X ∼ B(n, µ)) with
mean rkµ and variance rkµ(1− µ). By rewriting

AMDS = P (X ≥ k) = P (X ≥ rkµ+ (k − rkµ))

we can apply Chebyshev’s inequality

P (X − E[X] ≥ t) ≤ V ar[X]

t2 + V ar[X]

when µ < 1/r to determine the following upper bound:

AMDS ≤ rkµ(1− µ)

(k − rkµ)2 + rkµ(1− µ)
=

µ(1− µ)

rk(1/r − µ)2 + µ(1− µ)
.
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Likewise, when µ > 1/r, one can similarly derive another bound
[22]:

1− AMDS ≤ µ(1− µ)

rk(1/r − µ)2 + µ(1− µ)
.

This analysis indicates that there are two distinct regimes. (1)
When the availability of storage nodes µ is smaller than the code’s
rate, i.e, µ < k/n, then the larger k, the lower the object availabil-
ity, and hence using replication, i.e., k = 1 is preferable. (2) On
the contrary, when µ ≥ k/n, the larger the value of k, the better
the system’s resilience for any specific storage overhead.

While such a study reveals that erasure codes do not necessarily
provide better resilience than replication under all circumstances,
under diverse practical settings and considerations, erasure codes
have been found to be beneficial. It is important to note that the
static resilience analysis ignores the effect of maintenance mech-
anisms that replenish lost redundancy, which essentially yields a
larger effective µ. Thus another metric, namely mean time to data
loss, taking into account the dynamic processes of redundancy loss
as well as replenishment, is also often studied in the literature. This
metric will hardly be discussed in this survey, since the codes that
we present have not (yet) been analyzed with respect to mean time
to data loss.

4.2 Choice of Code Parameters

Another interesting conclusion one may draw from the above anal-
ysis is that the larger the value of the code parameter k, the better
the system’s resilience. However, there are many potential draw-
backs of using a large k. Foremost, larger k implies much more
meta-information for the different encoded pieces (that need to be
kept up to date in a dynamic environment). It also implies that
more nodes need to be contacted when reconstructing (decoding)
the original data object. Downloading data from many different
nodes in parallel during an access request may however also be
profitable. These are some of the several possible system design
implications which need to be considered when choosing the code
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parameters in practice.
Typical values of n and k thus depend on system considerations:

for data centers, the number of temporary failures is relatively low,
thus small (n, k) values such as (9, 6) [18] or (13, 10) [15] (with a
respective storage overhead of 9/6 = 1.5 and 13/10 = 1.3) are
known to have been used. In P2P systems, larger parameters like
(517, 100) are desirable (claimed to have been used in Wuala) to
guarantee availability since nodes frequently go temporarily offline.
Large values of n also allow a better margin for deferred repairs in
P2P systems, thus either avoiding repairs altogether in presence
of temporary churn, as well as amortizing the repair cost when
repairs are actually carried out [3].

4.3 Maintenance

Overall, in realistic scenarios (where the probability of individual
storage nodes being available µ is not too small) we saw that
using erasure codes is advantageous in terms of fault-tolerance
and storage overhead with respect to replication.

There is however a catch. Though erasure codes provide a good
fault-tolerance as far as data reconstruction is concerned, they
were not designed to repair subsets of arbitrary encoded blocks
efficiently. When a data block encoded by an MDS erasure code is
lost and has to be recreated, one would typically first need data
equivalent in amount to recreate the whole object in one place
(either by storing in advance a full copy of the data, or else by
downloading an adequate number of encoded blocks), even in or-
der to recreate a single encoded block. This in turn means that the
number of nodes that are contacted for repair (also called fan-in)
is at least k. This strategy is a waste of communication bandwidth
if only one encoded fragment is needed, though its cost is amor-
tized if repairs are deferred, and multiple repairs are carried out
together. Even in the case of deferred repair, the node which needs
to acquire adequate data and restore each encoded fragment re-
mains a bottleneck, which might delay the repairs. A slower repair
process can in turn adversely affect the long term data durability.
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Finally, note that the above is a theoretical view point on main-
tenance, and the fact that many commercial deployments actually
claim to use some variation of Reed-Solomon codes show that there
are existing engineering solutions to mitigate some of the indicated
drawbacks.



Part II

Codes with Better
Repairability
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5

Code Design for Repairability

The use of MDS erasure codes for fault tolerance in networked
distributed storage systems (NDSS), where node availability is not
too low, has been motivated in the first part of this survey. This
is based on the premise that these erasure codes require a smaller
storage overhead than replication for the same or even better fault
tolerance.

However, an important drawback of MDS erasure codes is their
lack of compatibility with NDSS maintenance requirements. This
deficiency has triggered in the recent years a lot of research activity
around the design of new classes of erasure codes, better suited for
NDSS maintenance needs. Before discussing some of these novel
coding techniques, we will like to outline the various aspects that
are considered to characterize “better” repairability in the existing
literature surveyed.

It is well understood that the original redundancy of a storage
system needs to be replenished for data survivability on the long
run. A naive repair strategy for an (n, k) MDS code is: one live
node must obtain a whole copy of the object (or some data which
contains all the original object information), from which the lost
encoded pieces can be recreated before being distributed to other
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live nodes in the system.
Based on the understanding of the repair process for MDS era-

sure codes, several quantitative and qualitative conclusions can
be drawn: (1) the communication cost of repair is heavy: in
particular if no node keeps a whole replica, then k pieces of data
needs to be downloaded for repairing even a single lost piece, (2)
this in turn means that k live nodes or more are actually
require to respond, while these nodes are likely to give prior-
ity to other tasks they need to complete at the same time, (3)
which may further accentuates the issue of the time needed to
actually complete a repair, which can be particularly critical
in the event of correlated failures. One may also argue about (4)
high computational cost for the node that needs to retrieve and
encode the object again, and the fact that (5) this single node
becomes a bottleneck for the whole repair process.

These drawbacks of the traditional repair mechanism used for
MDS erasure codes shed light on some desirable repairability prop-
erties for codes used in the context of NDSS. In addition to con-
tinue to provide good fault tolerance (static resilience) for low
storage overhead, such codes should, during the repair process ex-
hibit one or preferably several of the following features:

(1) reduction in overall data transfer over the network (de-
noted as γ henceforth),

(2) reduction in the number of nodes contacted, i.e. re-
pair fan-in (denoted as d 1),

(3) reduction in the amount of data that needs to be read
from the live nodes, i.e. disk I/O,

(4) possibility to repair multiple faults,
(5) possibility to distribute the repair load and parallelize

the repair process and
(6) reduction in the time to complete repairs.

There are likely other desirable properties directly relevant to

1Note that we use a similar notation for the distance dH of a code. Hopefully, the
context of usage helps avoid any confusion.
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the repair process itself (for instance, computational and system
design complexity), and there are other consequences such as read,
write and update efficiency, etc. that also are affected by the choice
of the code design. Many of these additional issues will be mainly
ignored in our survey, since for most of the codes that we will
study, these aspects remain open for further investigation.

The above list will serve us as a guideline to categorize the
code constructions presented next. In Chapter 6, we recall an ap-
proach based on network coding, whose goal is to minimize the
data transfer during repair. In Chapter 7, four code constructions
- Hierarchical codes, Pyramid codes, local reconstruction codes,
and redundantly grouped codes - which have in common to com-
bine two layers of erasure codes are described. Though each of
them has an agenda of its own, they also share one salient aim,
that of reducing the repair fan-in d, i.e. the number of nodes con-
tacted to perform a repair. The codes presented in Chapter 8 push
this idea to its limit, and ask for codes having a repair fan-in as
small as possible. We note that a small fan-in might in turn result
in reducing the repair bandwidth. In fact, how the desirable re-
pair properties are intertwined is in itself an interesting question
to address. We will see as we described the code constructions
that there are many trade-offs, and as one might expect, it is not
possible to achieve everything at the same time.

5.1 Notations and Assumptions

Let us fix some notation and terminology before we proceed. We
consider a network of N nodes, and one data object is stored
across n of these N nodes. This (data) object, or file, is of length
B symbols (symbols being a unit of choice, such as bits, bytes,
etc). We use the simplifying assumption that only one object is
stored, unless stated otherwise explicitly. Each node is assumed to
have the same storage capacity of α symbols.

Nodes that participate in the repair process are sometimes
called newcomers in the literature. These could be nodes that are
indeed newly added to the system, or may be nodes that already
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existed previously, but were not storing any data corresponding to
the specific object whose redundancy replenishment is being car-
ried out. A newcomer is assumed to connect to d nodes which store
encoded parts of the object in question (sometimes also called live
nodes), and download some data from each of these d nodes. Ev-
ery link has a download capacity of β symbols, and a newcomer is
thus downloading at most dβ amount of data in total from these
live nodes.

When coding is used for redundancy, the file of length B is
cut into k fragments of length B/k each, that we will denote by
u = (u1, . . . , uk) (to keep the same notation as in the previous
chapter). Note that this splitting of the object into k to perform
the encoding is different from potentially slicing the object first in
case its size is too big.

Encoding generates a codeword x = (x1, . . . , xn) with n > k.
Each of the xi is assigned to a different node to be stored.

Most commonly used notations:

(1) N is the total number of nodes in the network.
(2) n is the number of nodes storing one object.
(3) The size of a data object is B (symbols).
(4) An (n, k) code is used to encode the object.
(5) α is the storage capacity of every node.
(6) d is the repair fan-in,
(7) β is the amount of data downloaded from a live

node by a newcomer participating in the repair.
(8) γ is the bandwidth cost to perform a repair.



6

Network Codes on Codes

The repair of failed nodes in networked distributed storage systems
(NDSS) is a process which involves transmission of data from live
nodes to nodes where the lost redundancy is being replenished
(which will also be referred to as newcomers, as explained in the
previous chapter). From that perspective, a natural question is
whether network coding techniques [1, 38, 21], which are known
to increase the throughput of a network by allowing intermediate
nodes to encode their incoming packets, can be leveraged upon in
order to improve the transfer of useful information during repair.
In [9] (and references therein), the possible benefit of employing
network coding techniques for replenishing redundancy is affirmed
by determining how it can minimize the repair traffic for the case
of a single failure. The main result of [9] is a nice trade-off between
the node storage capacity α and the repair bandwidth γ, while en-
suring that the original amount of fault-tolerance is restored. The
first part of this chapter presents a more general storage capacity
versus repair bandwidth trade-off, mainly based on the works [20]
and [35], which generalize the result of [9] to the case of multiple
faults repaired simultaneously.

Numerous codes have been proposed in the literature, which
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take achieving these storage-bandwidth curves as code design cri-
terion. We will discuss some of these in the second half of the
chapter, under the name of “network codes on codes”, even though
some of them might not really perform any network coding oper-
ations, in that the coding operations involved are trivial. Many
such code constructions available in the literature are deliberately
not reported here, both because the emphasis of this survey is
not to exhaustively enumerate all codes, but instead to capture
various flavors of code designs, network coding based techniques
being only one of them, and also because surveys specialized on
this particular type of coding for NDSS exist, and the interested
reader may refer to one of them, e.g. [10].

6.1 Network Coding and Information Flow

A key concept in network coding theory is that of information
flow: the network is seen as a directed graph, where data flows
from the sources to the sinks via vertices and edges of this graph.

Similarly in the storage context, one data object to be stored
flows from a source to some n storage nodes, then to some other
storage nodes during the repair process, and finally to a sink (or
data collector) which contacts κ1 nodes to access the object. To
capture the notion of storage capacity in the information flow,
each node is abstracted as a logical pair of two nodes (xin, xout)
[9], connected with an edge of capacity α: xin

α→ xout. To repair t
faults simultaneously, t ≥ 2, t newcomers each contacts a possibly
different set of d live nodes, and downloads β amount of data from
each of the d nodes from its chosen set. The newcomers can then
collaborate [20, 34] by exchanging the downloaded information
among each other. To model this collaborative scenario, each node
is now abstracted as a triple (xin, xcoord, xout) [20] instead of a pair,
where the edge between xin and xcoord represents the amount of
data that the node temporarily stores (which is at least the storage

1The original papers use the notation k, however we decided to use κ since k is a code
parameter, and we will see later that sometimes κ is equal to k while sometimes it
is not.
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capacity α), while the edge between xcoord and xout is as before,
i.e., the storage capacity α:

xin
≥α→ xcoord

α→ xout.

Collaboration among the t nodes participating in the repair is
modeled by edges of weight β′ among the respective xin and xcoord

(see Fig. 3). In particular, each of the t nodes has t− 1 incoming
edges. The total amount of bandwidth needed per repair is thus

γ = dβ + (t− 1)β′ (6.1)

If t = 1, there is no collaboration, and γ = dβ.

6.2 A Min-Cut Bound

A necessary condition for a data collector to recover a stored object
despite several rounds of failures/repairs can be seen on the infor-
mation flow graph considered above: it is needed that an amount
of information at least the size of the stored object circulates from
the source to the data collector. According to the max-flow min
cut-theorem, any min-cut in the information graph should be at
least equal to the object size. Let us now see how a min-cut bound
can be derived [20].

We assume that repairs have been triggered g times, each at a
threshold of t faults. The data collector contacts κ live nodes to
download the data object it wants. Of these live nodes, a group
of ui ≤ t nodes had participated in the ith repair generation,
i = 0, . . . , g − 1, thus u0 + . . .+ ug−1 = κ.

The network nodes are partitioned into a set U and its com-
plementary set Ū . A cut is given by a set of edges, with one end
connected to a node in U and the other end to a node in Ū . We
will pick one particular cut, as we now explain. The cut we choose
is such that the source belongs to U , while Ū contains the data
collector. Any new node (xin, xcoord, xout) joining one repair gen-
eration connects to d live nodes. We assume that the xout part of
any such node belongs to Ū and when the first repair is triggered,
these are the only nodes in Ū along with the data collector.
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Fig. 3: Three different cuts are illustrated: the storage capacity
link, the xin → xcoord link, or the download links are cut.

When the first round of repairs is triggered (g = 0), u0 nodes
join as a group. All the u0 xout nodes are in Ū , and the xin nodes
can be either in U , say m of them, or in Ū , for the remaining
u0 −m.
Case 1. For each of them xin nodes in U , either the corresponding
xcoord node is in U or it is in Ū . If it is in U , then the contribution
to the cut is α, coming from the storage link xcoord

α→ xout. If the

xcoord node is instead in Ū , the cut involves xin
≥α→ xout. Since we

do not know how many xcoord nodes are on either side, a lower
bound is determined when all the m xin nodes are in U , for a total
cut of mα.
Case 2. We now look at the u0 −m xin nodes in Ū . Since this is
the first group of newcomers joining, those xin nodes in Ū need to
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connect to existing nodes in U , leading to a cut of dβ. Similarly,
every xcoord node needs to connect to t − 1 xin nodes involved in
this repair, but since u0 −m are already in Ū (in fact u0 −m− 1
others), the cut will contain only (t − 1) − (u0 +m − 1) of the t

edges.
The total contribution c0(m) of this stage of repair in the min-

cut is

c0(m) ≥ mα + (u0 −m)[dβ + (t− u0 +m)β′].

Since the function c0(m) is concave on the interval [0, u0], it has
its minima (or minimum) on its boundary, namely in m = 0 and
m = u0, and c0(m) has either one global minimum in one of the
two points, or two minima if both points give the same value, so
that

c0(m) ≥ min(c0(u0), c0(0)) = min(u0α, u0[dβ + (t− u0)β
′]).

The process is the same for the group of newcomers joining the
second repair generation. All the xout nodes are in Ū . Irrespec-
tively of where their corresponding xcoord are, the m xin nodes in
U contribute at least mα to the cut. The u1 −m xin nodes in Ū

contribute (u1 −m)(d − u0)β, since they could connect to the u0

nodes from the first group already in Ū . Their corresponding xcoord

nodes only connect to nodes from the second group, and thus as
before, their contribution is (t− u1 +m)β′, which gives

c1(m) ≥ mα + (u1 −m)[(d− u0)β + (t− u1 +m)β′]
≥ min(u1α, u1[(d− u0)β + (t− u1)β

′]).

Iterating for all the groups of repairs gives the following min-cut
bound.

Proposition 2. A min-cut bound between the source and a data
collector is

mincut(S,DC) ≥
g−1∑
i=0

uimin(α, [d−
i−1∑
j=0

uj]β + (t− ui)β
′)

where g is the number of repair generations, ui is the size of each
newcomer group, and κ =

∑g−1
i=0 ui with 1 ≤ ui ≤ t.
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For the data collector to be able to retrieve the object, it is
needed that the amount of information that flows from the source
through the network is at least the size B of the data, that is

g−1∑
i=0

uimin(α, [d−
i−1∑
j=0

uj]β + (t− ui)β
′) ≥ B.

Definition 7. We call any coding strategy that allows the data
collector to retrieve the object by contacting any κ nodes and that
satisfies

g−1∑
i=0

uimin(α, [d−
i−1∑
j=0

uj]β + (t− ui)β
′) = B (6.2)

a Collaborative regenerating code ([20] used the term coordinated
regenerating codes while [34] chose cooperative regenerating codes).

Note that the authors of [17] who proposedmutually cooperative
recovery also computed a min-cut bound in the context of collabo-
ration among newcomers, but they consider only a particular case
of the above, when (1) β = β′, (2) the new nodes automatically
contact all the live nodes.

When t = 1 failure, ui = 1 for all i, thus t− ui = 0 and g = κ,
which gives

mincut(S,DC) ≥
κ−1∑
i=0

min(α, [d−
i−1∑
j=0

1]β)

and we get the following corollary.

Corollary 2. [9] A min-cut bound between the source and a data
collector is

mincut(S,DC) ≥
κ−1∑
i=0

min{(d− i)β, α}.

The goal is now, given n, κ, d, t, to find the optimal trade-off
between the storage cost α and the repair cost γ (6.1) subject to
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the min-cut constraint (6.2). This is a highly non-trivial optimiza-
tion problem, which is solved in closed form expression in [35]. We
report the solution below, before discussing important particular
cases, that of the boundary points [20, 35].

Let C(d, κ, t) be the closure of all admissible operating points
achieved by Collaborative regenerating codes. To shorten the no-
tation, define

Dj = κ(2d− 2κ+ 2j + t− 1)− j(j − 1)

D′
l = κ(d+ t(l + 1)− κ)− t2l(l + 1)/2

∆j = ⌊j/t⌋t2 + (j − ⌊j/t⌋t)2

µj =
j(d− κ) + (j2 +∆j)/2

jt−∆j

, ∆j < jt,

and µj = ∞ if ∆j = jt.

Theorem 3. We have that C(d, κ, t) is the convex hull of (that
is, the smallest convex set containing) the union of the following
sets of points:{(

2d+ t− 1

Dj

,
2(d− κ+ j) + t− 1

Dj

)
, j = 2, . . . , κ− 1, d ≤ (r − 1)µ(j)

}
,{(

d+ t− 1

D′
⌊j/t⌋

,
d+ t(⌊j/t⌋+ 1)− κ

D′
⌊j/t⌋

)
, j = 2, . . . , κ− 1, d > (r − 1)µ(j)

}
,

where for both sets, it is defined that when r = 1, 0 · ∞ = ∞,{(
d+ t− 1

κ(d+ t− κ)
+ c,

1

κ

)
, c ≥ 0

}
,

and {(
2d+ t− 1

κ(2d+ t− κ)
,

2d+ t− 1

κ(2d+ t− κ)
+ c

)
, c ≥ 0

}
.

Note that the trade-off points are given normalized by the size B
of the object.

When t = 1 (and remembering the convention 0 · ∞ = ∞),
the above theorem gives as particular case the optimal storage
bandwidth trade-off curve computed in [9].
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γ(α)

0.8

Fig. 4: The closure of all admissible operating points achieved by
Collaborative regenerating codes: C(d, κ, t)

6.3 Minimum Storage and Repair Bandwidth Points

Two extreme cases of (6.2) can be identified. The highest contribu-
tion from the term [d−

∑
uj]β comes when there is no contribution

from β′(t − ui), that is, ui = t for all i, in which case g = κ/t,
yielding

κ/t−1∑
i=0

tmin((d− it)β, α) = B. (6.3)

Conversely, the highest contribution in β′(t− ui) is required when
[d−

∑
uj]β is minimized, that is ui = 1 for all i, and g = κ:

κ−1∑
i=0

min((d− i)β + (t− 1)β′, α) = B. (6.4)
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The minimum storage (MSR) point : the minimum stor-
age per node is α = B/κ, given that, by definition of κ, the data
should be retrieved from any choice of κ nodes. Recall that when
encoding an object with an (n, k) code, each encoded fragment,
stored at a distinct node, has size B/k. Thus at the MSR point,
κ = k, and the requirement that a data collector should be able to
recover an object by contacting κ = k nodes translates into saying
that an MDS code (see Definition 5) is used.

Now from (6.3), we have a sum of κ/t terms, each of size at
most tB/κ. Since the total must be at least B, each term in the
sum must be tB/κ. Thus for every i

tmin((d− it)β, α) =
Bt

κ

and

(d− it)β ≥ B

κ
,

in particular the smallest β is obtained for i = κ/t− 1, that is

β =
B

κ

1

d− κ+ t
.

The same computation with (6.4) gives

β′ =
B

κ

1

d− κ+ t
.

Thus at the minimum storage point, we have (given that κ = k)

α =
B

κ
, β = β′ =

B

κ

1

d− κ+ t
, γ =

B

κ

d+ t− 1

d+ t− κ
. (6.5)

Note that this expression is also obtained by setting c = 0 in
Theorem 3.

The denominators d − κ + t have to be strictly positive for
these expressions to make sense, namely d − κ ≥ 1 − t, which in
the particular case t = 1 implies that d − κ ≥ 0 and the repair
fan-in d must be at least the number κ of nodes contacted by
the data collector for object retrieval. There is in fact a more
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fundamental tension between d and κ that appears here. Because
the underlying (n, k) erasure code is MDS, the repair fan-in d must
satisfy that d ≥ k = κ. Indeed, if d were smaller than k, then it
would mean that some of the encoded fragments stored at different
nodes were linear combinations of each others, in which case, the
data collector could not possibly reconstruct the data out of a set
of k nodes which includes those d+ 1 nodes.

The minimum bandwidth point : to minimize γ alone, let
α tend to infinity in (6.3), thus

κ/t−1∑
i=0

t(d− it)β ≥ B

that is

β =
B

t

1

d(κ/t)− t
∑κ/t−1

i=0 i

=
B

κ

2

2d− κ+ t
.

From (6.4) we similarly compute that

β′ =
B

κ

1

2d− κ+ t
.

Since α must be greater or equal to both (d− i)β + (t− 1)β′ and
(d− it)β for every i, we get that

α = dβ + (t− 1)β′.

To summarize, at the minimum bandwidth point, we have

α =
B

κ

2d+ t− 1

2d− κ+ t
, β′ =

B

κ

1

2d− κ+ t
, β = 2β′, γ = α . (6.6)

This expression is also obtained by setting c = 0 in Theorem 3.

6.4 Examples of Regenerating Codes

In the previous section, Collaborative regenerating codes were de-
fined as codes whose parameters fit in the trade-off curve between
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the storage overhead α and the repair bandwidth γ = dβ+(t−1)β′,
or satisfy (6.2). When t = 1, we drop the term “collaborative” and
call them Regenerating codes, as they were firstly introduced [9].

The above analysis provides bounds on the best that can be
achieved, but not the codes themselves. Most importantly, it does
not specify what the repair process should look like. While it is
easier for the system to keep track of the system state when a
recreated fragment is “bit by bit” identical to what was lost, in
fact it is also possible to replace the missed data by some other
data, which plays the same role as far as maintaining the amount
of redundancy is concerned. The former is called exact repair [36],
while the latter form of repair has been referred to as functional
repair2.

We will present three illustrative constructions of Regenerat-
ing codes, two of them [31] are actually for the case of one failure
t = 1, one at the minimum bandwidth point, and one at the mini-
mum storage point. The third construction [34] is a Collaborative
regenerating code at the minimum storage point. We chose these
examples to illustrate different design points, and we are by no
means trying to be exhaustive here. For a better overview of exist-
ing Regenerating codes, the interested readers may refer to existing
surveys that discuss exclusively this type of codes, e.g. [10].

Construction I [31]: one failure at the minimum storage
point. Consider the minimum storage regeneration (MSR) point
for t = 1 failure, which from (6.5) is given by

(αMSR, βMSR) =

(
B

κ
,

B

κ(d− κ+ 1)

)
.

If we fix βMSR = 1 which is the smallest unity of data that can be
downloaded (we normalize with respect to β), we get

B = κ(d− κ+ 1)

2While the phrase ‘functional repair’ was coined in [36], we will like to note that
introducing non-identical substitute for lost redundancy has been contemplated in
the literature for other kinds of codes also, for instance for rateless codes.
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and thus
αMSR = d− κ+ 1, βMSR = 1.

By fixing d = κ+ 1, we further have

B = 2κ, αMSR = 2.

Encoding. Let Fq be some finite field. Partition the object o =
(o1, . . . , oB) ∈ FB

q into two vectors o1 = (o1, . . . , oκ) and o2 =
(oκ+1, . . . , oB) (recall that B = 2κ thus both vectors have the
same size). The ith node will store α = 2 symbols, given by

(o1p
T
i ,o2p

T
i + o1v

T
i )

where pi and vi are row vectors which define the encoding, i =
1, . . . , n. It is asked that the vectors pTi are the columns of the
generator matrix G′ of an (n, k) MDS code (see Definition 5):

G′ =
[
pT1 . . . pTn

]
.

The encoding of the whole code, which is an (2n, 2κ) linear code,
is then given by

[o1,o2]

[
G′ V

0 G′

]
(6.7)

where V = [vT1 , . . . , v
T
n ] is some matrix.

It might be confusing to see the use a (2n, 2k) code, while
one would expect to see an (n, k) code here. What is actually
happening is that each node stores 2 symbols, thus we do have a
code which maps k symbols of length 2, to n symbols of length 2
as well. It is however easier to design a code on 2k symbols, by
splitting every symbol of length 2 into two.
Object retrieval. To retrieve the object from κ nodes, a data
collector downloads the 2 symbols from κ nodes, and then obtains

(o1p
T
i ,o2p

T
i + o1v

T
i )

for a set of κ indices. Because G′ is the generator matrix of an
(n, κ) MDS code, o1 can be recovered. Once o1 is known, and
assuming that all the vi are known, the data collector is left with
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o2p
T
i , which can be recovered similarly as o1 since G′ corresponds

to a MDS code.
Repair of a failure. Suppose one node, say the jth node fails,
thus (o1p

T
j ,o2p

T
j + o1v

T
j ) is lost. A newcomer downloads β = 1

symbol from d = κ+ 1 nodes (w.l.o.g we label these d nodes from
1 to d = κ+ 1), and this downloaded symbol is of the form

wi = ai(o1p
T
i ) + (o2p

T
i + o1v

T
i ), i = 1, . . . , d,

for some ai ∈ Fq to be defined later. Now the newcomer computes
two new symbols out of these d wi, by creating a linear combination
of them:

(
d∑

i=1

δiwi,
d∑

i=1

ρiwi),

and ρi and δi are chosen respectively such that

d∑
i=1

ρip
T
i = pTj ,

d∑
i=1

δip
T
i = 0.

The key point here is that both equations are sets of κ linear
equations (the pi have length κ) in d = κ+ 1 unknowns (either δi
or ρi) and thus have a non-trivial solution in δi, i.e., such that the
δi are not all zero. Now

d∑
i=1

δiwi =
d∑

i=1

δi[ai(o1p
T
i ) + (o2p

T
i + o1v

T
i )]

= o1

d∑
i=1

δiaip
T
i + o2

d∑
i=1

δip
T
i +

d∑
i=1

δio1v
T
i

= o1

d∑
i=1

δi[aip
T
i + vTi ]

and it is enough to pick ai (again we have κ linear equations in
κ+ 1 unknowns) such that

d∑
i=1

δi[aip
T
i + vTi ] = pTj
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to repair the first symbol o1p
T
j . Similarly

d∑
i=1

ρiwi =
d∑

i=1

ρi[ai(o1p
T
i ) + (o2p

T
i + o1v

T
i )]

= o1

d∑
i=1

ρiaip
T
i + o2

d∑
i=1

ρip
T
i +

d∑
i=1

ρio1v
T
i

= o1

d∑
i=1

ρi[aip
T
i + vTi ] + o2p

T
j

= o1v
′
j
T
+ o2p

T
j

where

v′j
T
=

d∑
i=1

ρi[aip
T
i + vTi ]

is some vector (which is not important as long as it is known, as
seen in (6.7)). Since (o1p

T
j ,o2p

T
j + o1v

T
j ) has been replaced with

(o1p
T
j ,o2p

T
j + o1v

′
j
T ) with v′j being possibly different from vj, this

construction provides functional repair.

Example 14. Take n = 5 nodes, κ = 3 and d = κ + 1 = 4, so
that B = 2κ = 6. We denote the object o = (o1, . . . , o6) ∈ F6

q with
o1 = (o1, o2, o3) and o2 = (o4, o5, o6). The encoding is thus done
by

[o1,o2]

[
pT1 . . . pT5 vT1 . . . vT5
0 . . . 0 pT1 . . . pT5

]
= [o1p

T
1 , . . . ,o1p

T
5 ,o1v

T
1 + o2p

T
1 , . . . ,o1v

T
5 + o2p

T
5 ].

To get a suitable (5, 3) MDS code, we can take a Reed-Solomon
code (see Section 3.3). To be sure that a Reed-Solomon code exists,
it is enough to pick a finite field with the right size, that is |Fq| ≥ 5.
Let us say we pick F8 = {0, 1, w, w+1, w2, w2+1, w2+w,w2+w+1}
and w3 = w + 1. The encoding of the Reed-Solomon code is done
by evaluating the polynomial f(X) = o1 + o2X + o3X

2 in say
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1, w, w + 1, w2, w2 + 1, yielding

[o1, o2, o3]

1 1 1 1 1
1 w w + 1 w2 w2 + 1
1 w2 (w + 1)2 w4 (w2 + 1)2

 .

Construction II [31]: one failure at the minimum band-
width point. Consider the minimum repair bandwidth (MRB)
point for t = 1 failure, which from (6.6) is given by

(αMRB, βMRB) =

(
2Bd

2κd− κ2 + κ
,

2B

2κd− κ2 + κ

)
.

If we fix again βMRB = 1, we get

B = κd− κ2 − κ

2

and thus
αMRB = d, βMRB = 1.

Now the the biggest gain in bandwidth occurs when d = n− 1, in
which case, the choice of β = 1, d = n − 1 and κ determine the
size B of the object:

B = κ(n− 1)− κ2 − κ

2
.

Encoding. Let o = (o1, . . . , oB) ∈ FB
q be the object to be stored.

Every node stores α = d = n − 1 encoded pieces, computed as
follows (see Fig. 5). Create a fully connected acyclic graph that
connect all the n nodes, thus containing n(n− 1)/2 vertices. Now
to each of the edges, associate a vector vj, j = 1, . . . , n(n − 1)/2,
and give to each node n−1 encoded pieces of the form ovTj , where
the vj’s are the n− 1 vectors associated to each edge connected to
this node. The vectors vj, j = 1, . . . , n(n− 1)/2, must satisfy the
following conditions.
Object retrieval. For the data collector to be able to retrieve
the data out of κ nodes, we must have that out of any choice of
κ nodes, it gets κ(n − 1) encoded pieces which yield a system of
κ(n−1) equations to be solved for B = κ(n−1)− κ2−κ

2
unknowns.
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Fig. 5: A Regenerating code at MBR.

Repair of a failure. If the ith node fails, a newcomer can get its
data by downloading one fragment from each of the n−1 remaining
nodes, since by the code construction, whenever a vertex connects
two nodes, they share a common encoded fragment of the form
ovTj .

Example 15. Consider the example shown in Fig. 5 with n = 5
and κ = 3, so that d = n − 1 = 4. The number of nodes is thus
n = 5, while the number of vertices is n(n − 1)/2 = 10, for an
object of size B = 9. If we write the encoding as that of a linear
erasure code, we get

[o1, . . . , oB]
[
vT1 vT2 . . . vT10

]
and we can choose the generator matrix G = [vT1 , . . . , v

T
10] to be

that of the single parity check code (10, 9) (see Example 2), that
is

G =
[
I9 1T

]
where 1 = [1, 1, 1, 1, 1, 1, 1, 1, 1]. By contacting κ = 3 nodes, the
data collector gets κ(n−1) = 3·4 = 12 encoded pieces which yield a
system of 12 equations, out of them 3 are redundant. Thus, in fact
9 independent equations need to be solved for B = 9 unknowns.
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We make one more remark here: the code parameters are
(B, n(n− 1)/2), and in the above example the chosen (10,9) code
is in fact MDS. However, as mentioned for the previous code, what
is needed is that when we look at the code where the encoded
fragments are grouped together, the resulting code is MDS. This
is in theory less restrictive than asking the (B, n(n − 1)/2) code
to be MDS, though it is not clear how such a code should be
computed. On the other hand, it is indeed enough to pick the
(B, n(n− 1)/2) code to be MDS.

Construction III [34]: t failures at the minimum stor-
age point. Consider the (n, k) Reed-Solomon code which is de-
fined over the finite field Fq with q ≥ n. Suppose that the
size B of the object o to be stored is B = tk, so that o =
(o11, . . . , o1k, . . . , ot1, . . . , otk) can be written as the matrix

O =

 o11 . . . o1k

ot1 . . . , otk

 , oij ∈ Fq.

Note that the object is cut into a number of pieces which depends
on the number t of failures after which a repair is triggered, with
k < n− t. We only consider the regime κ = k = d.
Encoding. The generator matrix G of the Reed-Solomon code is
a k × n Vandermonde matrix whose columns are denoted by gi,
i = 1, . . . , n. Every node is assumed to know G, and the ith node
stores the t-dimensional column vector Ogi, whose rows represent
t different pieces, forming its encoded data.
Object retrieval. Any choice of k nodes i1, . . . , ik clearly allows
to retrieve o since we get

O[gi1 , . . . ,gik ]

where the matrix formed by any k columns of G is a Vandermonde
matrix and is thus invertible.
Repair of t failures. Let us now assume that t nodes become
unavailable, and t new nodes join. Let us call the t new nodes as
nodes 1 to t w.l.o.g. The ith newcomer asks [oi1, . . . , oik]gj for any
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choice j1, . . . , jk of k nodes among the live nodes, to obtain

[oi1, . . . , oik][gj1 , . . . ,gjk ],

from which [oi1, . . . , oik] is decoded, by inverting the matrix formed
by these k columns of G. This furthers allows the ith node to com-
pute [oi1, . . . , oik]gj for any j, which is then sent to the jth new-
comer. All newcomers do similar computations and likewise deliver
the missing pieces to the other newcomers, hence completing the
collaborative regeneration process.

Example 16. Consider the (7, 3) Reed-Solomon code which is de-
fined over the finite field F8 = {0, 1, w, w2, w3, w4, w5, w6, w7} with
w3 = w + 1. Suppose that the object o is to be stored in n = 7
nodes, while expecting to deal with t = 2 failures. First, repre-
sent the object as o = (o11, o12, o13, o21, o22, o23) with oij in F8. The
generator matrix G of the Reed-Solomon code is given by: 1 1 1 1 1 1 1

w w2 1 + w w + w2 1 + w + w2 1 + w2 1
w2 w + w2 1 + w2 w 1 + w 1 + w + w2 1

 .

Now create a matrix O as follows:

O =

[
o11 o12 o13
o21 o22, o23

]
.

The ith node stores Ogi where gi denotes the ith column of G,
for example, node 1 stores the two units

O

 1
w

w2

 =

[
o11 + o12w + o13w

2

o21 + o22w + o23w
2

]
.

Any choice of k = 3 nodes i1, i2, i3 clearly allows to retrieve o
since we get

O[gi1 ,gi2 ,gi3 ]

where the matrix formed by any 3 columns of G is a Vandermonde
matrix and is thus invertible.
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Codes on Codes

The codes proposed in the previous chapter can be seen as a com-
bination of an erasure code and a network code.

Other families of codes have been proposed, which combine two
erasure codes instead. Examples include Hierarchical Codes [11],
Pyramid Codes [19] and Local Reconstruction Codes [18] which we
will present next. While all of them have their own set of design ob-
jectives to fulfill, they all have in common better repairability. We
will end this chapter by describing redundantly grouped codes [7],
which use codes on codes as well, but differ from all the others by
the fact that it encodes multiple objects together.

We start by recalling the definition of product codes, a classical
technique introduced by Elias [12] to combine two erasure codes.

7.1 Product Codes

Let C1 and C2 be two systematic codes with parameters (n1, k1)
and (n2, k2) respectively, and generator matrices

G1 = [Ik1 A1], G2 = [Ik2 A2],

If U is a k2 × k1 matrix containing the information symbols of
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k2 × k1 k2 × (n1 − k1)
data bits parity bits for C1

(n2 − k2)× k1 (n2 − k2)× (n1 − k1)
parity bits for C2 “parity of parity”

Table 7.1: The general form of a codeword from the product code
of C1 and C2.

the data to be encoded, then the product code C = C1 × C2 of C1
and C2 is described by the n2 × n1 codewords of the form

X =

[
U UA1

A2
TU A2

TUA1

]
,

where each row is a codeword from C1, since

X =

[
U

A2
TU

]
[Ik1 A1]

and similarly each column is a codeword from C2:

X =

[
Ik2
A2

T

]
[U UA1].

The product code C of C1 and C2 has parameters (n1n2, k1k2),
and in fact, its minimum Hamming distance dH(C) can be com-
puted from dH(C1) and dH(C2).

Theorem 4. The minimum Hamming distance of the product
code C = C1 × C2 is

dH(C) = dH(C1)dH(C2).

Proof. Since every row of the codeword X belongs to C1, every
row has at least dH(C1) nonzero elements. Similarly, every column
belongs to C2, and thus has at least dH(C2) nonzero elements, which
shows that

dH(C) ≥ dH(C1)dH(C2).
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Choose now a codeword x from C1 with weight dH(C1). Then a
codeword X in which all the columns corresponding to zeros in x
are all-zero columns, and all the other columns are a codeword of
weight dH(C2) in C2 will always belong to the product code C of
C1 and C2, and will have weight dH(C1)dH(C2). This concludes the
proof.

It follows from the above theorem that a product code is not
MDS.

Corollary 3. The product code C = C1 × C2 cannot be a MDS
code.

Proof. An (n1n2, k1k2) code C is MDS if and only if dH(C) = n1n2−
k1k2 + 1. In the best case, when both C1 and C2 are themselves
MDS, we get that

dH(C) = dH(C1)dH(C2) = (n1 − k1 + 1)(n2 − k2 + 1)

and it is enough to show that

(n1 − k1 + 1)(n2 − k2 + 1) < n1n2 − k1k2 + 1,

which is equivalent to

−n1k2 + n1 − k1n2 + 2k1k2 − k1 + n2 − k2 < 0.

But

−n1k2 + n1 − k1n2 + 2k1k2 − k1 + n2 − k2

= k1(k2 − 1) + k2(k1 − 1)− n1(k2 − 1)− n2(k1 − 1)

= (k2 − 1)(k1 − n1) + (k1 − 1)(k2 − n2) < 0

whenever k1, k2 > 1 and k1 < n1, k2 < n2.

Example 17. The simplest example of product code is the parity
check code. If both C1 and C2 are single parity check codes, with
generator matrix

G1 = [Ik1 1], G2 = [Ik2 1]
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where 1 is the whole 1 column vector of the suitable dimension,
then

X =


u11 . . . u1k2

∑k2
i=1 u1i

uk11 . . . uk1k2

∑k2
i=1 uk1i∑k1

i=1 ui1

∑k1
i=1 uik2

∑k2
j=1

∑k1
i=1 uij

 = (xij).

It is easy to see in this parity check code that if an encoded
block xij is erased, then it is possible to recompute it using the
remaining n1 − 1 blocks from the ith row, or the n2 − 1 blocks
from the jth column, provided that the remaining blocks of the
row or column respectively are still available. This example shows
that it is possible to carry out a repair without having to access
the whole original data. In fact, such a localization of a repair is
feasible because a product code is not maximum distance separable
(as shown in Corollary 3), and hence there are linear dependencies
among a smaller subset of encoded pieces.

Product codes (and their generalization to higher dimensional
product codes) have been used in storage media such as compact
discs, thanks to their resilience against both random and bursty
erasures [4, sec. 10.1]. Indeed despite their poor minimum distance,
product codes have a structure that allows to correct large num-
bers of errors [4, sec. 10.1]. They have not been studied in their
generality, as far as we know, in context of distributed storage sys-
tems. However, the codes that we will present next can be viewed
as variations of the basic idea of employing two codes (codes on
codes) in order to achieve a certain degree of localized repairs.

7.2 Hierarchical Codes

Hierarchical codes [11] can be seen as a bottom-up approach of ap-
plying codes on codes. Let us first elaborate this with an example.

Example 18. Take the (3, 2) binary single parity check code, that
maps

[u1, u2] 7→ [u1, u2, u1 + u2].
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Now take two copies C1 and C2 of this code, namely

C1 : [u1, u2] 7→ [u1, u2, u1 + u2], C2 : [u3, u4] 7→ [u3, u4, u3 + u4].

We now combine these two codes to obtain a (7, 4) code C as
follows:

[u1, u2, u3, u4] 7→ [u1, u2, u1 + u2, u3, u4, u3 + u4, u1 + u2 + u3 + u4].

If we look at the obtained codeword in Example 18, we see that
the 3rd encoded coefficient u1 + u2 corresponds to the parity bit
obtained from the the first code, and the 6th coefficient u3 + u4

to that of the second code. These two bits act as local redundancy
which can be used to localize the repair of an erasure. For instance,
in case u2 and u3 both fail, they can be recovered independently
using u1, u1 + u2 and u4, u3 + u4 respectively. The last coefficient
u1+u2+u3+u4 is a parity bit computed from the all 4 information
symbols, and provides some global redundancy.

We remark that the above example has some similarities with
product codes: in fact, Example 17 with k1 = k2 = 2 gives

X =

 u11 u12 u11 + u12

u21 u22 u21 + u22

u11 + u21 u12 + u22 u11 + u12 + u21 + u22


and the above Hierarchical code is a product code combining two
parity codes where two coefficients (u11 + u21 and u12 + u22) have
been deleted.

This example can now be generalized in different ways (in which
case, the resulting Hierarchical code may not fit the product code
framework anymore).:

(1) Instead of calculating a simple parity bit for the local
redundancy, more sophisticated codes could be used, and
multiple bits of local redundancy may be created.

(2) Likewise, instead of using a single parity check code
to determine the global redundancy, more sophisticated
codes could again be used to create multiple bits of global
redundancy.
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Fig. 6: Hierarchical code example

(3) The process may be iterated multiple times, possibly by
using different codes at each iteration. A simple contin-
uation of Example 18 is shown in Figure 6.

(4) Finally, instead of combining two code copies C1, C2, one
could combine an arbitrary number L of code copies
C1, . . . , CL at a particular iteration.

This more general setting, where multiple layers can further
be built on top of each other in a similar manner, gives rise to
Hierarchical codes.

Definition 8. Let C1, . . . , CL be L copies of an (n, k) code, i =
1, . . . , L, which map

[ui,1, . . . , ui,k] 7→ [xi,1, . . . , xi,n].

The construction which consists of iteratively creating a new code
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on top of C1, . . . , CL, by taking the Lk coefficients and add, on
top of the local redundancy (of (Ln− k) coefficients) that already
exists, another layer of global redundancy, is referred to as Hier-
archical codes.

The motivation behind Hierarchical codes is to have a repair
fan-in d which is smaller than k, which is the fan-in when using a
classical erasure code (say a Reed-Solomon code). This construc-
tion leads to the idea of “local” versus “global” redundancy, where
local refers to redundancy computed from a small subset of the in-
formation symbols. When few errors occur, only local redundancy
is used to repair, as illustrated in Example 18, where u2 and u3

can be recovered independently using u1, u1 + u2 and u4, u3 + u4

respectively. However, it is also easy to see that different encoded
blocks have different importance. To continue with Example 18, if
u1 and u2 fail simultaneously, then they can not be reconstructed
anymore. If instead u2 and u1 + u2 are lost simultaneously, we see
that they cannot be rebuilt in parallel, and instead u1 + u2 needs
to be reconstructed first using u3 + u4 and the global redundancy
u1 + u2 + u3 + u4, following which, u2 can also be repaired.

For this very simple case, we see that even though it provides a
way for low-overhead repairs, the fault-tolerance of the Hierarchi-
cal code is worse than that of a (7, 4) Hamming code (see Example
4), which in itself is not even an MDS code. There is unfortunately
little theory to understand the fault-tolerance of Hierarchical codes
(and it seems that both their general definition together with the
asymmetric role that different encoded fragments play make such
an analysis quite difficult), though one can refer to [11] for some
simulation results.

A natural question to ponder is, can we achieve similar localized
repairability, while ensuring a good fault tolerance. Pyramid codes
[19], which incidentally were proposed before Hierarchical codes
have some analogous properties of local and global redundancies,
and yet has a structure which makes analytical study of their fault
tolerance more tractable. We will thus discuss them next.
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7.3 Pyramid and Local Reconstruction Codes

Let us start by explaining the motivating example given in [19].
Take an (11, 8) MDS code, say a Reed-Solomon code (this is pos-
sible as long as the size of the finite field used is |Fq| ≥ 11) with
generator matrix G, so that:

[u1, . . . , u8]G = [x1, . . . , x11],

where the codeword can be written, in systematic form, as

[x1, . . . , x11] = [u1, . . . , u8, c1, c2, c3].

A Pyramid code can be built from this base code, by retain-
ing the systematic pieces, and two of the non-systematic pieces
(without loss of generality, lets say, c2, c3).

Additionally, split the information symbols into two groups
u1, . . . , u4 and u5, . . . , u8, and compute some more redundancy co-
efficients for each of the two groups, which is done by picking a
first symbol c1,1 corresponding to c1 with [u1, . . . , u4,0], that is

c1,1 = [u1, . . . , u4,0]G,

and c1,2 corresponding to c1 with [0, u5, . . . , u8]:

c1,2 = [0, u5, . . . , u8]G.

This results in a (12, 8) code, which in systematic form looks
like

[u1, . . . , u8]G = [u1, . . . , u8, c1,1, c1,2, c2, c3]

where c1,1 + c1,2 is equal to the original code’s c1:

c1,1 + c1,2 = [u1, . . . , u8]G = c1.

We notice that Hierarchical codes are similar to this construc-
tion, in that both codes have this notion of “local” redundancy
computed from subsets of the information symbols, and “global
redundancy” which comes from potentially all the information
symbols. However, the design of Pyramid code may be seen as
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u1 . . . uk1︸ ︷︷ ︸
S1

. . . SL cn−m1 . . . cn︸ ︷︷ ︸
global redundancy

c11 . . . cm01︸ ︷︷ ︸
redundancy forS1

. . . c1L . . . cm0L︸ ︷︷ ︸
redundancy forSL

Fig. 7: A Pyramid codeword.

a top-down approach, in that a larger code is reused to build the
smaller codes, in contrast to Hierarchical code, where smaller codes
are assembled together to form a bigger code. Similarly to Hier-
archical codes, if few erasures occur in Pyramid codes, local re-
dundancy can be used to repair them, thus reducing the fan-in
(or number of nodes contacted to repair). It is worth noting that
while Pyramid codes have such localized repairability property,
they were originally designed to enable fault-tolerant and efficient
access (degraded reads). The fault-tolerance of Pyramid codes has
been analyzed, and will be discussed subsequently in Proposition
3.

More generally, suppose that we start with an (n, k) MDS
code, and split the k information symbols u1, . . . , uk into L groups
S1, . . . , SL, of size |Si| = ki, i = 1, . . . , L, with k = k1 + . . . + kL.
Set

m = n− k

that is m is the number of redundancy symbols of the MDS code.
Out of these m symbols, keep m1 of them, and computes m0 =
m−m1 new “local” redundancy symbols for each group Sl (thus
for a total of m0L such symbols), denoted by cj,l, j = 1, . . . ,m0,
where cj,l is computed as cj (in the original MDS code) by setting
S1 to SL to zero but for Sl. A codeword obtained in this fashion
defines a Pyramid code (see Fig. 7).

The fault-tolerance of the original (n, k) code can be used to
understand the fault-tolerance [19] of the derivative Pyramid code.

Proposition 3. A Pyramid code constructed from an (n, k) MDS
code can recover arbitrary m = n − k erasures, and each group
itself is a (kl +m0, kl) MDS code.

Proof. First note that a Pyramid code constructed from an (n, k)
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MDS code encodes k information symbols into a codeword of
length m1 + m0L, where m1 is the number of redundancy coef-
ficients kept from the original MDS code which forms the global
redundancy, while there are L blocks ofm0 coefficients for the local
redundancy.

Let us consider an arbitrary failure pattern with m erasures.
Now these erasures can occur either in the local redundancy sym-
bols, say r of them, or in the global redundancy symbols and
original data, for m− r of them.

Case 1.When r ≥ m0, that is, the number of erasures affecting
the local redundancy symbols is more than the number of local
redundancy symbols for one group Sl.
In this case, assume that all the local redundancy symbols have
been erased. From the perspective of the original MDS code, it
had m redundancy symbols, and m1 are still there, while all the
rest is lost, which means for this MDS code that it experienced
m0 erasures. Together with the m − r erasures in the rest of the
data, the total number of erasures for this MDS code is

m0 +m− r ≤ m = n− k

since r ≥ m0, showing that the original MDS code will recover
from these failures.

Case 2.When r < m0, then the number of erasures in the local
redundancy symbols is less than the number of local redundancy
symbols for one group Sl.

Recall that the knowledge of all cj,l for the same j yields the
symbol cj of the original MDS code. Thus the worst that can
happen is that the r erasures affect different j, which means that
out of the m0 cj, r are erased, and from the point of view of the
original MDS code, the total of erasures is

m− r + r = m

and recovery is possible. This proves the first part of the statement.
For the second part, (i.e., each group itself is a (kl + m0, kl)

MDS code) suppose that one group Sl corresponds to a (kk +
m0, kl) code which is however not MDS. Then this code must fail
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to recover some erasure pattern with m0 failures. Now consider
the case where all data blocks are set to zero, but for Sl. Then Sl

together with the m1 global redundancy symbols is equivalent to
the original MDS code. Even if these m1 symbols are erased, the
original MDS code can recover the data even if m0 erasures occur
because m0+m1 = m erasures in total. Thus Sl can be recovered,
a contradiction.

A multi-hierarchical extension of basic Pyramid codes exists,
where the groups Si are separated in smaller groups, and the pro-
cess of keeping some global redundancy blocks, and creating local
ones is iterated, which in fact explains the name Pyramid. Gen-
eralized Pyramid codes, which allow the data blocks to overlap,
were also presented in [19]. We let the interested reader refer this
paper for further details.

We conclude this section by mentioning that particular exam-
ples of Pyramid codes, called Local Reconstruction Codes, are in
fact used in Microsoft Azure [18]. The main particularity of LRC
is that the coefficients of the generator matrix are optimized to
belong to a field of small size (F24), unlike the originally proposed
Pyramid codes.

Example 19. A LRC which encodes k = 6 data blocks into 2
local parities and 2 global parities is optimized in [18]. A codeword
then has the form

(x0, x1, x2, y0, y1, y2, px, py, p0, p1)

where the xi and yi form the data object, px and py are the 2 local
parities formed respectively from the xi and yi, while p0 and p1
are the global parities.

7.4 Cross-object Coding

All the coding techniques we have seen so far in this survey, as
well as those which will follow address the repairability problem
at the granularity of isolated objects that are stored using erasure
coding. However, the idea of product code (see Section 7.1) can in
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fact also be harnessed by carrying out codes over codes, but across
multiple objects [7] as shown in Figure 8.

Consider m1 objects O1, . . . , Om to be stored. For j = 1, . . . ,m,
object Oj is erasure encoded into n encoded pieces ej1, . . . , ejn, all
of them to be stored in mn distinct storage nodes. Additionally,
parity groups formed by m encoded pieces (with one encoded piece
chosen from each of the m objects) can be created, together with
a parity piece (or xor), where w.l.o.g, a parity group is of the
form e1l, . . . , eml for l = 1, . . . , n, and the parity piece pl is pl =
e1l+ . . .+eml. The parity pieces are then stored in other n distinct
storage nodes. Such an additional redundancy is akin to RAID-4.

Fig. 8: Redundantly grouped coding: an horizontal layer of coding
is performed on each object, using an (n, k) code, while a parity
bit is computed vertically across m objects where m is a design
parameter

.

This code design, called Redundantly grouped coding is similar
to a two-dimensional product code in that the coding is done both
horizontally and vertically. The design objectives are here some-
what different, namely: (i) the horizontal layer of coding primarily
achieves fault-tolerance by using an (n, k) erasure coding of in-
dividual objects, while (ii) the vertical single parity check code
mainly enables cheap repairs (by choosing a suitable m) by creat-

1Note that m has sometimes been used for n−k in the previous chapters, the value
of m here is unrelated.
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ing RAID-4 like parity of the erasure encoded pieces from different
objects.

The number of objects m that are cross-coded indeed deter-
mines the fan-in for repairing isolated failures independently of
the code parameters n and k. If m < k, it can be shown that the
probability that more than one failure occurs per column is small,
and thus repair using the parity bit is often enough - resulting in
cheaper repairs, while relatively infrequently repairs may have to
be performed using the (n, k) code. The choice of m determines
trade-offs between repairability, fault-tolerance and storage over-
heads which have been formally analyzed in [7]. Somewhat surpris-
ingly, the analysis demonstrates that for many practical parameter
choices, this cross-object coding achieves better repairability while
retaining equivalent fault-tolerance as maximum distance separa-
ble erasure codes incurring equivalent storage overhead.

Such a strategy also leads to other practical concerns as well
as opportunities, such as the issues of object deletion or updates,
which need further rigorous investigation before considering them
as a practical option.
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8

Locally Repairable Codes

The codes proposed in the context of network coding (see Chap-
ter 6) were aiming at reducing the repair bandwidth, and can be
seen as the combination of an MDS code and a network code.
Hierarchical and Pyramid codes (see Chapter 7) instead tried to
reduce the repair degree or fan-in (i.e., the number of nodes needed
to be contacted to repair) by using “erasure codes on top of era-
sure codes”. In this chapter, we present some recent families of
codes [23, 25, 24, 32] which minimize the repair fan-in d, trying
to achieve d = 2 or 3. Forcing the repair degree to be small has
advantages in terms of repair time and bandwidth, however, it
might affect other code parameters (such as its rate, or storage
overhead). Recent works start to address these trade-offs [13, 16].
We will present some of the results of [16] after elaborating a few
specific instances of locally repairable codes.

The term “locally repairable” is inspired from [13] where the
repair degree d of a node is called the “locality d” of a codeword
coordinate, and is reminiscent of locally decodable and locally cor-
rectable codes, which are well established topics of study in theo-
retical computer science. Self-repairing codes [23, 25] were to our
knowledge the first (n, k) codes designed to achieve d = 2 per

73
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repair for up to n−1
2

simultaneous failures. Another family of lo-
cally repairable codes, namely Punctured Reed-Mueller codes [32]
have been proposed very recently that we describe in this chapter.
Punctured Reed-Mueller codes are based on polynomial evaluation
(similar to one of the instances [23, 25] of Self-Repairing codes) and
can achieve a repair degree of either 2 or 3.

8.1 Self-Repairing Codes

We present here the main idea of [23]. Let o be an object of size
B to be stored over a network of n nodes, that is o ∈ FqB , where q
is a power of 2, and let k be a positive integer such that k divides
B. We can write

o = (o1, . . . , ok), oi ∈ FqB/k

which requires the use of an (n, k) code over FqB/k to generate a
codeword x = (x1, . . . , xn), following which each xi is given to a
different node to be stored.

It is known from Reed-Solomon codes (see Chapter 3) that
linear coding can be done via polynomial evaluation. Let us recall
how: take an object o = (o1, o2, . . . , ok) of size B, with each oi in
FqB/k , and create the polynomial

p(X) = o1 + o2X + . . . okX
k−1 ∈ FqB/k [X].

Now evaluate p(X) at n elements α1, . . . , αn ∈ FqB/k the polyno-
mial is evaluated only for nonzero αis), to obtain the codeword

(p(α1), . . . , p(αn)), k < n ≤ qB/k − 1.

Definition 9. We call homomorphic self-repairing code, denoted
by HSRC(n, k), the code obtained by evaluating the polynomial

p(X) =
k−1∑
i=0

piX
2i ∈ FqB/k [X] (8.1)

at n non-zero values α1, . . . , αn of FqM/k to get an n-dimensional
codeword

(p(α1), . . . , p(αn)),
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where pi = oi+1, i = 0, . . . , k − 1 and each p(αi) is given to node i

for storage.

Since we work over finite fields that contain F2, recall that
all operations are done in characteristic 2, that is, additions are
performed modulo 2. Let a, b ∈ Fqm , for some m ≥ 1 and q = 2t.
Then we have that (a+ b)2 = a2+2ab+ b2 = a2+ b2 since 2ab ≡ 0
mod 2, and consequently

(a+ b)2
i

=
2i∑
j=0

C2i

j ajb2
i−j = a2

i

+ b2
i

, i ≥ 1. (8.2)

The last equality holds by noticing that the binomial coefficient
C2i

j =
(
2i

j

)
is always a multiple of 2 and thus congruent to 0 modulo

2, except when j = 0 and j = 2i.

Lemma 1. Let a, b ∈ Fqm and let p(X) be the polynomial given
by p(X) =

∑k−1
i=0 piX

2i . We have

p(a+ b) = p(a) + p(b).

Proof. If we evaluate p(X) in a+ b, we get

p(a+ b) =
k−1∑
i=0

pi(a+ b)2
i

=
k−1∑
i=0

pi(a
2i + b2

i

)

by (8.2), and

p(a+ b) =
k−1∑
i=0

pia
2i +

k−1∑
i=0

pib
2i = p(a) + p(b).

It is the choice of this polynomial in (8.1) that enables local re-
pairs. Decoding is achieved by either Lagrange interpolation or by
considering a system of linear equations, subject to the constraint
that k ≤ B/k.
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Example 20. Take a data file o = (o1, . . . , o12) of B = 12 bits
(q = 2), and choose k = 3 fragments. We have that B/k = 4,
which satisfies k = 3 ≤ B/k = 4.

The file o is cut into 3 fragments o1 = (o1, . . . , o4), o2 =
(o5, . . . , o8), o3 = (o9, . . . , o12) ∈ F24 . Let w be an element of F24 ,
such that w4 = w + 1. The polynomial used for the encoding is

p(X) =
4∑

i=1

oiw
iX +

4∑
i=1

oi+4w
iX2 +

4∑
i=1

oi+8w
iX4.

The n-dimensional codeword is obtained by evaluating p(X) in n
elements of F24 , n ≤ 15.

For n = 4, if we evaluate p(X) in wi, i = 0, 1, 2, 3, then the
4 encoded fragments p(1), p(w), p(w2), p(w3) are F2-linearly inde-
pendent and there is no local repair possible.

Now for n = 7, and say, 1, w, w2, w4, w5, w8, w10, we get:

(p(1), p(w), p(w2), p(w4), p(w5), p(w8), p(w10)).

Suppose node 5 which stores p(w5) becomes unavailable. A new-
comer can reconstruct p(w5) by asking for p(w2) and p(w), since

p(w5) = p(w2 + w) = p(w2) + p(w).

Table 8.1 shows other examples of missing fragments and which
pairs can reconstruct them, depending on if 1, 2, or 3 fragments
are missing simultaneously.

As for decoding, since p(X) is of degree 4, a node that wants to
recover the data needs k = 3 F2-linearly independent fragments,
say p(w), p(w2), p(w3), out of which it can generate p(aw + bw2 +
cw3), a, b, c ∈ {0, 1}. Out of the 7 non-zero coefficients, 5 of them
are enough to recover p. Finally, the rate of this code is 3/7 ≃ 0.43
(or storage overhead 7/3).

It is important to note that these codes are not MDS, thus to
evaluate their fault-tolerance, a static resilience analysis is needed
(see Chapter 4), which can be found in [23].

Another construction of self-repairing codes, called projective
self-repairing codes was proposed in [24], from which we present
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missing pairs to reconstruct missing fragment(s)
fragment(s)

p(1) (p(w), p(w4));(p(w2), p(w8));(p(w5), p(w10))
p(w) (p(1), p(w4));(p(w2), p(w5));(p(w8), p(w10))
p(w2) (p(1), p(w8));(p(w), p(w5));(p(w4), p(w10))

p(1) and (p(w2), p(w8)) or (p(w5), p(w10)) for p(1)
p(w) (p(w8), p(w10)) or (p(w2), p(w5)) for p(w)

p(1) and (p(w5), p(w10)) for p(1)
p(w) and (p(w8), p(w10)) for p(w)
p(w2) (p(w4), p(w10)) for p(w2)

Table 8.1: Ways of reconstructing missing fragment(s) in Example
20

an example below, to illustrate that very different techniques may
be used to construct codes achieving low repair degree.

Example 21. Suppose you have n = 5 nodes to store the data, an
object of size B = 4, k = 2 (meaning the data collector contacts
2 nodes to retrieve the data) and a storage capacity of α = 2.
Let us denote by Ni, i = 1, . . . , 5 the 5 storing nodes, and by
o = (o1, o2, o3, o4) the object to be stored. We propose the following
code:

node basis vectors data stored

N1 v1 = (1000), v2 = (0110) {o1, o2 + o3}
N2 v3 = (0100), v4 = (0011) {o2, o3 + o4}
N3 v5 = (0010), v6 = (1101) {o3, o1 + o2 + o4}
N4 v7 = (0001), v8 = (1010) {o4, o1 + o3}
N5 v9 = (1100), v10 = (0101) {o1 + o2, o2 + o4}

By basis vectors v1 and v2, we mean that the object is encoded by
using v1, v2 but also v1 + v2, namely

ovT1 , ovT2 .

Since ovT1 + ovT2 = o(vT1 + vT2 ), the node only needs to store
ovT1 , ov

T
2 though it does “know” o(vT1 +vT2 ). Let us give an exam-
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ple of repair: If say N1 fails, the data pieces o1 (corresponding to
the basis vector (1000)) and o2+o3 (corresponding to the basis vec-
tor (0110)) are lost. A new node joining the network can contact
nodes N3 and N4, from which it gets respectively v5 = (0010),
v6 = (1101) and v7 = (0001), v8 = (1010). Now v8 + v5 gives
(1000) while v8+(v6+v7) gives (0110). Unlike Homomorphic Self-
Repairing codes, this code is not atomic, and instead comprises
of α pieces per node. Thus, similarly to Regenerating codes, one
could also expect to regenerate an encoded block piece-by-piece,
by contacting more (larger d) number of nodes. For instance, N1

can also be repaired by downloading o2 from N2, o3 from N3 and
o1 + o3 from N4. By contacting d = 3 nodes, the two lost pieces of
N1 are repaired by downloading only three units of data.

For data reconstruction: by contacting k = 2 nodes, the data
collector gets 4 linear equations to decode an object of size B = 4.

Note that though this particular code happens to be MDS,
other instances are usually not MDS (see [24] for more details on
the fault-tolerance of these codes). We further notice that though
the above code is not systematic, one can however contact B = αk
specific nodes (instead of k), namely those storing as pieces each
of the canonical basis vectors (or unit vectors) to reconstruct the
object in a systematic manner. Systematic codes have practical
benefits, since it simplifies the object retrieval process.

8.2 Punctured Reed-Mueller Codes

A family of codes with repair degree 2 or 3 based on evaluations
of a multivariate polynomial is given in [32]. Let p be a prime.
Consider an object o = (o1, . . . , oB) ∈ FB

p of length B, and the
multivariate polynomial

f(X1, . . . , XB) =
B∑
i=1

oiXi.

A codeword is obtained by evaluating f(X1, . . . , XB) in the points

ai, ai + t((p− 1)ai + aj) ∈ FB
p ,
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for i = 1, . . . , N , i < j ≤ N , 1 ≤ t ≤ 1 + L, where N and
L are design parameters. Note that given i and j, we can set
h = (p− 1)ai + aj, and the polynomial is evaluated in

ai, ai + th,

where t goes from 1 to 1 + L. These points correspond to L + 2
points on a line.

Each coefficient of the codeword is stored at a distinct node.
Suppose that the node storing ai fails. The repair goes as follows:
two nodes corresponding to two other points on the same line are
contacted by a newcomer, which will obtain, say

f(ai + t1h), f(ai + t2h)

for two distinct values t1 and t2 of t from 1 to 1+L. Consider the
polynomial g(X) = f(ai + Xh). Equivalently, we might say that
the newcomer obtained two evaluations of this polynomial

g(t1), g(t2).

Since g is a polynomial of degree 1 in X, these two evaluations are
enough for the newcomer to obtain g(X), and by computing g(0),
the newcomer obtains the missing data. This construction allows
for a repair degree of d = 2 (as long as no more than L−1 failures
occurred).

This construction actually comes from a punctured RM(1, B)
Reed-Mueller code, and a similar one using a punctured RM(2, B)
Reed-Mueller code gives d = 3. We let the interested reader refer
to [32] for further details.

8.3 Bounds and Trade-Offs

Suppose that an object of length k is encoded into a codeword,
and the encoded data is distributed over n storage nodes, each
storing α symbols of data. Assume further that if one such storage
node fails, the lost redundancy can be replenished at a newcomer
by contacting d live nodes, and downloading β amount of data
from each. The two theorems below describe a trade-off between
the storage overhead nα/k and the repair degree d.
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Theorem 5. (1) If α = β, then (k/nα) ≤ d/(d + 1), and
equality holds for MDS codes with n = d+ 1.

(2) If α = dβ, then (k/nα) ≤ 1/2 for d > 1.

Theorem 6. For the case d = 2, we have that

R ≤ α + β/(3α).

More precisely, if n = 3q − e with e ∈ {0, 1, 2} then

k ≤ qα + (q − e)β.

Note that these bounds hold for functional repair (that is, when
the data does not have to be repaired bit-by-bit), and it is unlikely
that exact repair mechanisms can achieve them, while the three
previously described code constructions achieve exact repair.



9

Concluding Remarks

The continuously increasing amount of data to be stored nowadays
has triggered a shift in the way data is being stored in networked
distributed storage systems (NDSS), which have started to adopt
erasure codes to reduce their storage overhead while maintain-
ing high fault tolerance. While the main industry players have
already introduced coding techniques of their choice, different re-
search communities are also presenting new coding solutions, best
suited for the need of NDSS. The goal of this survey was two fold:
(1) to give some basic knowledge on storage systems and coding
techniques, and (2) to present some of the new families of codes
that have been recently proposed, focusing on the repairability as-
pect of the code. These codes were classified into 3 groups, depend-
ing on what is the main design criterion for better repairability:
minimize the repair bandwidth (using network coding techniques),
reduce the repair fan-in (combining two erasure codes), and finally
minimize the repair fan-in. While much is left to be done on codes
with good repairability, we conclude this survey by mentioning a
few of the numerous other open research directions.

81
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9.1 Future Directions

Most of the codes discussed in this survey were analyzed theo-
retically for a single object in isolation. In order to get a better
understanding of the actual performance of these codes, it will be
valuable to analyze them in more realistic settings, such as un-
der different failure patterns, and in a network where each storage
node stores multiple objects (e.g. [27]). Additionally, some other
aspects of erasure code based storage systems which seem worthy
of further study include the problems of inserting erasure encoded
data, or migrating replicated data into erasure coded ones, as well
as the resilience of such systems against Byzantine failures (rather
than just fail-stop failure model of erasures). We elaborate on these
next.

Data Insertion. A fairly unexplored aspect of using erasure
codes in NDSS is the problem of data insertion. When using repli-
cation, the data source sends the whole information to a storage
node, which stores a copy of the data and can just pipeline the
information to other nodes where the data is replicated. Things
are not that trivial for erasure coded data: in a naive solution, the
node that uploads the encoded pieces to other nodes needs to first
have the complete data, then it carries out all the computational
tasks, and finally bears the communication cost to distribute all
the encoded pieces. Mechanisms to create the encoded pieces in a
distributed fashion, using the network resources of multiple sys-
tem nodes, either immediately when data is being introduced in
the system or by migrating replicated data into erasure coded ones,
are some relatively new directions being explored in that context
(e.g. [28], [8]).

Security. The problem of securely storing data in an erasure
coding based NDSS has already attracted a fair amount of interest.
We will mainly mention a few aspects that are specific to the kind
of codes presented here. The most basic approach is to look into
error correcting capacity of some codes, which provides natural
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protection against undesired mutation. However, with the novel
coding approaches for repair, new vulnerabilities also come into
being. For instance, in network coding based techniques, if data
is polluted upstream, content at many downstream storage nodes
may be affected, e.g., [30, 26].

On a different note, when data storage is outsourced to a third
party, the data owner may need to carry out proofs of data posses-
sion and retrievability (PoR). Erasure codes provide a possibility
to do so in an efficient manner, and yet, over time, for mutable con-
tent, using deterministic coding structure may reveal information
that can be exploited by the third party to falsely pass the veri-
fications. New codes based on randomization [39] are thus being
investigated for robust PoR.
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